Skip to main content

16.02.2024 | Research

DGFormer: a physics-guided station level weather forecasting model with dynamic spatial-temporal graph neural network

verfasst von: Zhewen Xu, Xiaohui Wei, Jieyun Hao, Junze Han, Hongliang Li, Changzheng Liu, Zijian Li, Dongyuan Tian, Nong Zhang

Erschienen in: GeoInformatica

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, there has been an increased interest in understanding and predicting the weather using weather station data with Spatial-Temporal Graph Neural Networks (STGNN). However, it has large prediction errors as a result of the inherent non-linearities and the influence of dynamic spatio-temporal auto-correlation. Using a continuously-varying graph topology chronologically, while embedding domain knowledge to enforce validity, can effectively resolve the issue, but the implementation of such concept constitutes an interdisciplinary challenge for researchers. A Dynamic Graph Former (DGFormer) model is proposed to address this challenge. It combines a topology learner through a deep generative layer with domain knowledge enhancement inserted into the STGNN structure, where the derived physics-guided method allows for an efficient integration with the earth system. For capture of the optimal topology, we merge a node-embedding-based similarity metric learning and the superposition principle as physical assistants into the dynamic graph module. We evaluate our model with a real-world weather dataset on short-term (12 hours) and medium-range (360 hours) prediction tasks. DGFormer achieves outstanding performance with obvious improvements by up to 34.84% at short-term prediction and by up to 23.25% at medium-range prediction compared with the state-of-the-art methods. We also conducted detailed analyses for cities in three regions and visualized the dynamic graph, revealing the characteristics, advantages, and graph visualization of our model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bauer P, Thorpe A, Brunet G (2015) The quiet revolution of numerical weather prediction. Nature 525(7567):47–55CrossRefPubMedADS Bauer P, Thorpe A, Brunet G (2015) The quiet revolution of numerical weather prediction. Nature 525(7567):47–55CrossRefPubMedADS
2.
Zurück zum Zitat Lin H, Gao Z, Xu Y, Wu L, Li L, Li SZ (2022) Conditional local convolution for spatio-temporal meteorological forecasting. Proceedings of the AAAI conference on artificial intelligence 36:7470–7478CrossRef Lin H, Gao Z, Xu Y, Wu L, Li L, Li SZ (2022) Conditional local convolution for spatio-temporal meteorological forecasting. Proceedings of the AAAI conference on artificial intelligence 36:7470–7478CrossRef
3.
Zurück zum Zitat Pathak J, Subramanian S, Harrington P, Raja S, Chattopadhyay A, Mardani M, Kurth T, Hall D, Li Z, Azizzadenesheli K, et al (2022) Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. arXiv:2202.11214 Pathak J, Subramanian S, Harrington P, Raja S, Chattopadhyay A, Mardani M, Kurth T, Hall D, Li Z, Azizzadenesheli K, et al (2022) Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. arXiv:​2202.​11214
4.
Zurück zum Zitat Worley PH, Mirin AA, Craig AP, Taylor MA, Dennis JM, Vertenstein M (2011) Performance of the community earth system model. In: Proceedings of 2011 international conference for high performance computing, networking, storage and analysis, pp 1–11 Worley PH, Mirin AA, Craig AP, Taylor MA, Dennis JM, Vertenstein M (2011) Performance of the community earth system model. In: Proceedings of 2011 international conference for high performance computing, networking, storage and analysis, pp 1–11
5.
Zurück zum Zitat Weyn JA, Durran DR, Caruana R (2019) Can machines learn to predict weather? using deep learning to predict gridded 500-hpa geopotential height from historical weather data. Journal of Advances in Modeling Earth Systems 11 Weyn JA, Durran DR, Caruana R (2019) Can machines learn to predict weather? using deep learning to predict gridded 500-hpa geopotential height from historical weather data. Journal of Advances in Modeling Earth Systems 11
6.
Zurück zum Zitat Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D et al (2020) The era5 global reanalysis. Q J R Meteorol Soc 146(730):1999–2049CrossRefADS Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D et al (2020) The era5 global reanalysis. Q J R Meteorol Soc 146(730):1999–2049CrossRefADS
7.
Zurück zum Zitat Lam R, Sanchez-Gonzalez A, Willson M, Wirnsberger P, Fortunato M, Pritzel A, Ravuri S, Ewalds T, Alet F, Eaton-Rosen Z et al (2022) Graphcast: Learning skillful medium-range global weather forecasting. arXiv:2212.12794 Lam R, Sanchez-Gonzalez A, Willson M, Wirnsberger P, Fortunato M, Pritzel A, Ravuri S, Ewalds T, Alet F, Eaton-Rosen Z et al (2022) Graphcast: Learning skillful medium-range global weather forecasting. arXiv:​2212.​12794
8.
Zurück zum Zitat Kashinath K, Mustafa M, Albert A, Wu J, Jiang C, Esmaeilzadeh S, Azizzadenesheli K, Wang R, Chattopadhyay A, Singh A et al (2021) Physics-informed machine learning: case studies for weather and climate modelling. Phil Trans R Soc A 379(2194):20200093MathSciNetCrossRefPubMedADS Kashinath K, Mustafa M, Albert A, Wu J, Jiang C, Esmaeilzadeh S, Azizzadenesheli K, Wang R, Chattopadhyay A, Singh A et al (2021) Physics-informed machine learning: case studies for weather and climate modelling. Phil Trans R Soc A 379(2194):20200093MathSciNetCrossRefPubMedADS
9.
Zurück zum Zitat Zhou Z, Lin G, Yang K, BAI L, Wang Y et al (2022) Greto: Remedying dynamic graph topology-task discordance via target homophily. In: The eleventh international conference on learning representations Zhou Z, Lin G, Yang K, BAI L, Wang Y et al (2022) Greto: Remedying dynamic graph topology-task discordance via target homophily. In: The eleventh international conference on learning representations
11.
Zurück zum Zitat Wang R, Kashinath K, Mustafa M, Albert A, Yu R (2020) Towards physics-informed deep learning for turbulent flow prediction. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp 1457–1466 Wang R, Kashinath K, Mustafa M, Albert A, Yu R (2020) Towards physics-informed deep learning for turbulent flow prediction. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp 1457–1466
12.
Zurück zum Zitat Cai W, Ng B, Geng T, Wu L, Santoso A, McPhaden MJ (2020) Butterfly effect and a self-modulating el niño response to global warming. Nature 585(7823):68–73CrossRefPubMedADS Cai W, Ng B, Geng T, Wu L, Santoso A, McPhaden MJ (2020) Butterfly effect and a self-modulating el niño response to global warming. Nature 585(7823):68–73CrossRefPubMedADS
14.
Zurück zum Zitat Molteni F, Buizza R, Palmer TN, Petroliagis T (1996) The ecmwf ensemble prediction system: Methodology and validation. Q J R Meteorol Soc 122(529):73–119CrossRefADS Molteni F, Buizza R, Palmer TN, Petroliagis T (1996) The ecmwf ensemble prediction system: Methodology and validation. Q J R Meteorol Soc 122(529):73–119CrossRefADS
15.
Zurück zum Zitat Lamarque JF, Emmons LK, Hess PG, Kinnison DE, Tilmes S, Vitt F, Heald CL, Holland EA, Lauritzen PH, Neu J (2012) Cam-chem: description and evaluation of interactive atmospheric chemistry in the community earth system model. Geosci Model Dev 5:369–411CrossRefADS Lamarque JF, Emmons LK, Hess PG, Kinnison DE, Tilmes S, Vitt F, Heald CL, Holland EA, Lauritzen PH, Neu J (2012) Cam-chem: description and evaluation of interactive atmospheric chemistry in the community earth system model. Geosci Model Dev 5:369–411CrossRefADS
16.
Zurück zum Zitat Benjamin SG, Brown JM, Brunet G, Lynch P, Saito K, Schlatter TW (2019) 100 years of progress in forecasting and nwp applications. Meteorol Monogr 59:13–1CrossRefADS Benjamin SG, Brown JM, Brunet G, Lynch P, Saito K, Schlatter TW (2019) 100 years of progress in forecasting and nwp applications. Meteorol Monogr 59:13–1CrossRefADS
17.
Zurück zum Zitat Hewage P, Trovati M, Pereira E, Behera A (2021) Deep learning-based effective fine-grained weather forecasting model. Pattern Anal Applic 24(1):343–366CrossRef Hewage P, Trovati M, Pereira E, Behera A (2021) Deep learning-based effective fine-grained weather forecasting model. Pattern Anal Applic 24(1):343–366CrossRef
18.
Zurück zum Zitat Ebert-Uphoff I, Hilburn K (2023) The outlook for AI weather prediction. Nature Publishing Group UK London Ebert-Uphoff I, Hilburn K (2023) The outlook for AI weather prediction. Nature Publishing Group UK London
19.
Zurück zum Zitat Shi X, Chen Z, Wang H, Yeung D-Y, Wong W-K, Woo W-C (2015) Convolutional lstm network: A machine learning approach for precipitation nowcasting. Advances in Neural Information Processing Systems 28 Shi X, Chen Z, Wang H, Yeung D-Y, Wong W-K, Woo W-C (2015) Convolutional lstm network: A machine learning approach for precipitation nowcasting. Advances in Neural Information Processing Systems 28
20.
Zurück zum Zitat Bi K, Xie L, Zhang H, Chen X, Gu X, Tian Q (2022) Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. arXiv:2211.02556 Bi K, Xie L, Zhang H, Chen X, Gu X, Tian Q (2022) Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. arXiv:​2211.​02556
21.
Zurück zum Zitat Gao Z, Shi X, Wang H, Zhu Y, Wang YB, Li M, Yeung D-Y (2022) Earthformer: Exploring space-time transformers for earth system forecasting. Adv Neural Inf Process Syst 35:25390–25403 Gao Z, Shi X, Wang H, Zhu Y, Wang YB, Li M, Yeung D-Y (2022) Earthformer: Exploring space-time transformers for earth system forecasting. Adv Neural Inf Process Syst 35:25390–25403
22.
Zurück zum Zitat Wu H, Zhou H, Long M, Wang J (2023) Interpretable weather forecasting for worldwide stations with a unified deep model. Nature Machine Intelligence, pp 1–10 Wu H, Zhou H, Long M, Wang J (2023) Interpretable weather forecasting for worldwide stations with a unified deep model. Nature Machine Intelligence, pp 1–10
23.
Zurück zum Zitat Kurth T, Subramanian S, Harrington P, Pathak J, Mardani M, Hall D, Miele A, Kashinath K, Anandkumar A (2022) Fourcastnet: Accelerating global high-resolution weather forecasting using adaptive fourier neural operators. arXiv:2208.05419 Kurth T, Subramanian S, Harrington P, Pathak J, Mardani M, Hall D, Miele A, Kashinath K, Anandkumar A (2022) Fourcastnet: Accelerating global high-resolution weather forecasting using adaptive fourier neural operators. arXiv:​2208.​05419
24.
Zurück zum Zitat Qi Y, Li Q, Karimian H, Liu D (2019) A hybrid model for spatiotemporal forecasting of pm2. 5 based on graph convolutional neural network and long short-term memory. Sci Total Environ 664:1–10CrossRefPubMedADS Qi Y, Li Q, Karimian H, Liu D (2019) A hybrid model for spatiotemporal forecasting of pm2. 5 based on graph convolutional neural network and long short-term memory. Sci Total Environ 664:1–10CrossRefPubMedADS
25.
Zurück zum Zitat Cachay SR, Erickson E, Bucker AFC, Pokropek E, Potosnak W, Osei S, Lütjens B (2020) Graph neural networks for improved el ni\(\backslash ^{\sim }\) no forecasting. arXiv:2012.01598 Cachay SR, Erickson E, Bucker AFC, Pokropek E, Potosnak W, Osei S, Lütjens B (2020) Graph neural networks for improved el ni\(\backslash ^{\sim }\) no forecasting. arXiv:​2012.​01598
26.
Zurück zum Zitat Zhou H, Zhang S, Peng J, Zhang S, Li J, Xiong H, Zhang W (2021) Informer: Beyond efficient transformer for long sequence time-series forecasting. In: Proceedings of the AAAI conference on artificial intelligence vol 35, pp 11106–11115 Zhou H, Zhang S, Peng J, Zhang S, Li J, Xiong H, Zhang W (2021) Informer: Beyond efficient transformer for long sequence time-series forecasting. In: Proceedings of the AAAI conference on artificial intelligence vol 35, pp 11106–11115
27.
Zurück zum Zitat Yu B, Yin H, Zhu Z (2018) Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. In: Proceedings of the 27th international joint conference on artificial intelligence (IJCAI) Yu B, Yin H, Zhu Z (2018) Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. In: Proceedings of the 27th international joint conference on artificial intelligence (IJCAI)
28.
Zurück zum Zitat Li Y, Yu R, Shahabi C, Liu Y (2018) Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. In: International conference on learning representations (ICLR ’18) Li Y, Yu R, Shahabi C, Liu Y (2018) Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. In: International conference on learning representations (ICLR ’18)
29.
Zurück zum Zitat Agarwal A, Caesar L, Marwan N, Maheswaran R, Merz B, Kurths J (2019) Network-based identification and characterization of teleconnections on different scales. Sci Rep 9(1):8808CrossRefPubMedPubMedCentralADS Agarwal A, Caesar L, Marwan N, Maheswaran R, Merz B, Kurths J (2019) Network-based identification and characterization of teleconnections on different scales. Sci Rep 9(1):8808CrossRefPubMedPubMedCentralADS
30.
Zurück zum Zitat Li P, Yu Y, Huang D, Wang Z-H, Sharma A (2023) Regional heatwave prediction using graph neural network and weather station data. Geophys Res Lett 50(7):2023–103405CrossRef Li P, Yu Y, Huang D, Wang Z-H, Sharma A (2023) Regional heatwave prediction using graph neural network and weather station data. Geophys Res Lett 50(7):2023–103405CrossRef
31.
Zurück zum Zitat Wilson T, Tan P-N, Luo L (2018) A low rank weighted graph convolutional approach to weather prediction. In: 2018 IEEE international conference on data mining (ICDM). IEEE Wilson T, Tan P-N, Luo L (2018) A low rank weighted graph convolutional approach to weather prediction. In: 2018 IEEE international conference on data mining (ICDM). IEEE
32.
Zurück zum Zitat Wang R, Maddix D, Faloutsos C, Wang Y, Yu R (2021) Bridging physics-based and data-driven modeling for learning dynamical systems. In: Learning for dynamics and control, pp 385–398. PMLR Wang R, Maddix D, Faloutsos C, Wang Y, Yu R (2021) Bridging physics-based and data-driven modeling for learning dynamical systems. In: Learning for dynamics and control, pp 385–398. PMLR
33.
Zurück zum Zitat Skarding J, Gabrys B, Musial K (2021) Foundations and modeling of dynamic networks using dynamic graph neural networks: A survey. IEEE Access 9:79143–79168CrossRef Skarding J, Gabrys B, Musial K (2021) Foundations and modeling of dynamic networks using dynamic graph neural networks: A survey. IEEE Access 9:79143–79168CrossRef
34.
Zurück zum Zitat Sankar A, Wu Y, Gou L, Zhang W, Yang H (2020) Dysat: Deep neural representation learning on dynamic graphs via self-attention networks. In: Proceedings of the 13th international conference on web search and data mining, pp 519–527 Sankar A, Wu Y, Gou L, Zhang W, Yang H (2020) Dysat: Deep neural representation learning on dynamic graphs via self-attention networks. In: Proceedings of the 13th international conference on web search and data mining, pp 519–527
35.
Zurück zum Zitat Kazemi SM, Goel R, Jain K, Kobyzev I, Sethi A, Forsyth P, Poupart P (2020) Representation learning for dynamic graphs: A survey. J Mach Learn Res 21(1):2648–2720MathSciNet Kazemi SM, Goel R, Jain K, Kobyzev I, Sethi A, Forsyth P, Poupart P (2020) Representation learning for dynamic graphs: A survey. J Mach Learn Res 21(1):2648–2720MathSciNet
36.
Zurück zum Zitat BELYTSCHKO T (1989) The finite element method: linear static and dynamic finite element analysis: Thomas jr hughes. Comput Aided Civ Infrastruct Eng 4(3):245–246 BELYTSCHKO T (1989) The finite element method: linear static and dynamic finite element analysis: Thomas jr hughes. Comput Aided Civ Infrastruct Eng 4(3):245–246
38.
Zurück zum Zitat Khandelwal A, Xu S, Li X, Jia X, Kumar V (2020) Physics guided machine learning methods for hydrology Khandelwal A, Xu S, Li X, Jia X, Kumar V (2020) Physics guided machine learning methods for hydrology
39.
Zurück zum Zitat Yuan K, Zhu Q, Li F, Riley WJ, Torn M, Chu H, McNicol G, Chen M, Knox S, Delwiche K et al (2022) Causality guided machine learning model on wetland ch4 emissions across global wetlands. Agric For Meteorol 324:109115CrossRef Yuan K, Zhu Q, Li F, Riley WJ, Torn M, Chu H, McNicol G, Chen M, Knox S, Delwiche K et al (2022) Causality guided machine learning model on wetland ch4 emissions across global wetlands. Agric For Meteorol 324:109115CrossRef
40.
Zurück zum Zitat Reichstein M, Camps-Valls G, Stevens B, Jung M, Denzler J, Carvalhais N (2019) Deep learning and process understanding for data-driven earth system science. Nature 566(7743):195–204CrossRefPubMedADS Reichstein M, Camps-Valls G, Stevens B, Jung M, Denzler J, Carvalhais N (2019) Deep learning and process understanding for data-driven earth system science. Nature 566(7743):195–204CrossRefPubMedADS
41.
Zurück zum Zitat Willard J, Jia X, Xu S, Steinbach M, Kumar V (2020) Integrating physics-based modeling with machine learning: A survey. 1(1):1–34. arXiv:2003.04919 Willard J, Jia X, Xu S, Steinbach M, Kumar V (2020) Integrating physics-based modeling with machine learning: A survey. 1(1):1–34. arXiv:​2003.​04919
42.
Zurück zum Zitat Greenleaf A, Kurylev Y, Lassas M, et al. Cloaked electromagnetic, acoustic, and quantum interference, based on the description in 'Gudder SP (1970) A superposition principle in physics. J Math Phys 11(3):1037–1040 Greenleaf A, Kurylev Y, Lassas M, et al. Cloaked electromagnetic, acoustic, and quantum interference, based on the description in 'Gudder SP (1970) A superposition principle in physics. J Math Phys 11(3):1037–1040
43.
Zurück zum Zitat Oroian M, Amariei S, Escriche I, Gutt G (2013) A viscoelastic model for honeys using the time-temperature superposition principle (ttsp). Food Bioproc Tech 6:2251–2260CrossRef Oroian M, Amariei S, Escriche I, Gutt G (2013) A viscoelastic model for honeys using the time-temperature superposition principle (ttsp). Food Bioproc Tech 6:2251–2260CrossRef
44.
Zurück zum Zitat Helias M, Dahmen D (2020) Statistical field theory for neural networks. Lecture Notes in Physics Helias M, Dahmen D (2020) Statistical field theory for neural networks. Lecture Notes in Physics
45.
Zurück zum Zitat Halmos PR, Savage LJ (1949) Application of the radon-nikodym theorem to the theory of sufficient statistics. Ann Math Stat 20(2):225–241MathSciNetCrossRef Halmos PR, Savage LJ (1949) Application of the radon-nikodym theorem to the theory of sufficient statistics. Ann Math Stat 20(2):225–241MathSciNetCrossRef
46.
Zurück zum Zitat Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. Advances in Neural Information Processing Systems 27 Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. Advances in Neural Information Processing Systems 27
47.
Zurück zum Zitat Chen Y, Wu L, Zaki MJ (2020) Iterative deep graph learning for graph neural networks: Better and robust node embeddings Chen Y, Wu L, Zaki MJ (2020) Iterative deep graph learning for graph neural networks: Better and robust node embeddings
48.
Zurück zum Zitat Tian FR (1994) The whitham-type equations and linear overdetermined systems of euler-poisson-darboux type. Duke Math J 74(1):203–221MathSciNetCrossRef Tian FR (1994) The whitham-type equations and linear overdetermined systems of euler-poisson-darboux type. Duke Math J 74(1):203–221MathSciNetCrossRef
49.
Zurück zum Zitat Cattaneo C, Fontana L (2003) D’alembert formula on finite one-dimensional networks. J Math Anal Appl 284(2):403–424MathSciNetCrossRef Cattaneo C, Fontana L (2003) D’alembert formula on finite one-dimensional networks. J Math Anal Appl 284(2):403–424MathSciNetCrossRef
50.
Zurück zum Zitat Wazwaz, A-M (2010) Partial Differential Equations and Solitary Waves Theory Wazwaz, A-M (2010) Partial Differential Equations and Solitary Waves Theory
51.
Zurück zum Zitat Distribution, M (2005) Maxwell-boltzmann distribution. Curve Distribution, M (2005) Maxwell-boltzmann distribution. Curve
52.
Zurück zum Zitat Cubasch U, Voss R, Hegerl GC, Waszkewitz J, Crowley TJ (1997) Simula935 tion of the influence of solar radiation variations on the global climate with an 936 ocean-atmosphere circulation model. Climate Dynamics 13(11):757–767CrossRefADS Cubasch U, Voss R, Hegerl GC, Waszkewitz J, Crowley TJ (1997) Simula935 tion of the influence of solar radiation variations on the global climate with an 936 ocean-atmosphere circulation model. Climate Dynamics 13(11):757–767CrossRefADS
53.
Zurück zum Zitat Black CA, Macdonald TH (1965) Long-wave radiation Black CA, Macdonald TH (1965) Long-wave radiation
54.
Zurück zum Zitat Carpenter I, Archibald R, Evans KJ, Larkin J, Micikevicius P, Norman M, Rosinski J, Schwarzmeier J, Taylor MA (2013) Progress towards accelerating homme on hybrid multi-core systems. Int J High Perform Comput Appl 27(3):335–347CrossRef Carpenter I, Archibald R, Evans KJ, Larkin J, Micikevicius P, Norman M, Rosinski J, Schwarzmeier J, Taylor MA (2013) Progress towards accelerating homme on hybrid multi-core systems. Int J High Perform Comput Appl 27(3):335–347CrossRef
55.
Zurück zum Zitat Kopera MA, Giraldo FX (2014) Analysis of adaptive mesh refinement for imex discontinuous galerkin solutions of the compressible euler equations with application to atmospheric simulations. J Comput Phys 275:92–117MathSciNetCrossRefADS Kopera MA, Giraldo FX (2014) Analysis of adaptive mesh refinement for imex discontinuous galerkin solutions of the compressible euler equations with application to atmospheric simulations. J Comput Phys 275:92–117MathSciNetCrossRefADS
56.
Zurück zum Zitat Qin R, Duan C (2017) The principle and applications of bernoulli equation. In: Journal of physics: conference series, vol 916, pp 012038. IOP Publishing Qin R, Duan C (2017) The principle and applications of bernoulli equation. In: Journal of physics: conference series, vol 916, pp 012038. IOP Publishing
58.
Zurück zum Zitat Belkin M, Niyogi P (2001) Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv Neural Inf Process Syst 14(6):585–591 Belkin M, Niyogi P (2001) Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv Neural Inf Process Syst 14(6):585–591
59.
Zurück zum Zitat Wang S, Li Y, Zhang J, Meng Q, Meng L, Gao F (2020) Pm2. 5-gnn: A domain knowledge enhanced graph neural network for pm2. 5 forecasting. In: Proceedings of the 28th international conference on advances in geographic information systems, pp 163–166 Wang S, Li Y, Zhang J, Meng Q, Meng L, Gao F (2020) Pm2. 5-gnn: A domain knowledge enhanced graph neural network for pm2. 5 forecasting. In: Proceedings of the 28th international conference on advances in geographic information systems, pp 163–166
60.
Zurück zum Zitat Rasp S, Dueben PD, Scher S, Weyn JA, Thuerey N (2020) Weatherbench: A benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11) Rasp S, Dueben PD, Scher S, Weyn JA, Thuerey N (2020) Weatherbench: A benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11)
61.
Zurück zum Zitat Bai L, Yao L, Li C, Wang X, Wang C (2020) Adaptive graph convolutional recurrent network for traffic forecasting. Adv Neural Inf Process Syst 33:17804–17815 Bai L, Yao L, Li C, Wang X, Wang C (2020) Adaptive graph convolutional recurrent network for traffic forecasting. Adv Neural Inf Process Syst 33:17804–17815
62.
63.
64.
Zurück zum Zitat Vitart F, Ardilouze C, Bonet A, Brookshaw A, Chen M, Codorean C, Déqué M, Ferranti L, Fucile E, Fuentes M et al (2017) The subseasonal to seasonal (s2s) prediction project database. Bull Am Meteorol Soc 98(1):163–173CrossRefADS Vitart F, Ardilouze C, Bonet A, Brookshaw A, Chen M, Codorean C, Déqué M, Ferranti L, Fucile E, Fuentes M et al (2017) The subseasonal to seasonal (s2s) prediction project database. Bull Am Meteorol Soc 98(1):163–173CrossRefADS
66.
Zurück zum Zitat Liang J, Chen K, Xian Z (2021) Assessment of fy-2g atmospheric motion vector data and assimilating impacts on typhoon forecasts. Earth Space Sci 8(6):2020–001628CrossRef Liang J, Chen K, Xian Z (2021) Assessment of fy-2g atmospheric motion vector data and assimilating impacts on typhoon forecasts. Earth Space Sci 8(6):2020–001628CrossRef
67.
Zurück zum Zitat Runge J, Petoukhov V, Donges JF, Hlinka J, Jajcay N, Vejmelka M, Hartman D, Marwan N, Paluš M, Kurths J (2015) Identifying causal gateways and mediators in complex spatio-temporal systems. Nat Commun 6(1):8502CrossRefPubMedADS Runge J, Petoukhov V, Donges JF, Hlinka J, Jajcay N, Vejmelka M, Hartman D, Marwan N, Paluš M, Kurths J (2015) Identifying causal gateways and mediators in complex spatio-temporal systems. Nat Commun 6(1):8502CrossRefPubMedADS
68.
Zurück zum Zitat Li F, Zhu Q, Riley WJ, Yuan K, Wu H, Gui Z (2022) Wetter california projected by cmip6 models with observational constraints under a high ghg emission scenario. Earth’s Future 10(4):2022–002694CrossRef Li F, Zhu Q, Riley WJ, Yuan K, Wu H, Gui Z (2022) Wetter california projected by cmip6 models with observational constraints under a high ghg emission scenario. Earth’s Future 10(4):2022–002694CrossRef
69.
Zurück zum Zitat Silva FN, Vega-Oliveros DA, Yan X, Flammini A, Menczer F, Radicchi F, Kravitz B, Fortunato S (2021) Detecting climate teleconnections with granger causality. Geophys Res Lett 48(18):2021–094707CrossRef Silva FN, Vega-Oliveros DA, Yan X, Flammini A, Menczer F, Radicchi F, Kravitz B, Fortunato S (2021) Detecting climate teleconnections with granger causality. Geophys Res Lett 48(18):2021–094707CrossRef
Metadaten
Titel
DGFormer: a physics-guided station level weather forecasting model with dynamic spatial-temporal graph neural network
verfasst von
Zhewen Xu
Xiaohui Wei
Jieyun Hao
Junze Han
Hongliang Li
Changzheng Liu
Zijian Li
Dongyuan Tian
Nong Zhang
Publikationsdatum
16.02.2024
Verlag
Springer US
Erschienen in
GeoInformatica
Print ISSN: 1384-6175
Elektronische ISSN: 1573-7624
DOI
https://doi.org/10.1007/s10707-024-00511-1