Skip to main content

2016 | OriginalPaper | Buchkapitel

6. Dictionary Learning on Grassmann Manifolds

verfasst von : Mehrtash Harandi, Richard Hartley, Mathieu Salzmann, Jochen Trumpf

Erschienen in: Algorithmic Advances in Riemannian Geometry and Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sparse representations have recently led to notable results in various visual recognition tasks. In a separate line of research, Riemannian manifolds have been shown useful for dealing with features and models that do not lie in Euclidean spaces. With the aim of building a bridge between the two realms, we address the problem of sparse coding and dictionary learning in Grassmann manifolds, i.e, the space of linear subspaces. To this end, we introduce algorithms for sparse coding and dictionary learning by embedding Grassmann manifolds into the space of symmetric matrices. Furthermore, to handle nonlinearity in data, we propose positive definite kernels on Grassmann manifolds and make use of them to perform coding and dictionary learning.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The function that maps each vector \({{y}} \in T_\mathscr {P}\mathscr {M}\) to a point \(\mathscr {X}\) of the manifold that is reached after a unit time by the geodesic starting at \(\mathscr {P}\) with this tangent vector is called the exponential map. For complete manifolds, this map is defined in the whole tangent space \(T_\mathscr {P}\mathscr {M}\). The logarithm map is the inverse of the exponential map, i.e, \({{y}} = \log _{\mathscr {P}}(\mathscr {X})\) is the smallest vector \({{y}}\) such that \(\mathscr {X} = \exp _\mathscr {P}({{y}})\).
 
2
On an abstract Riemannian manifold \({\mathscr {M}}\), the gradient of a smooth real function f at a point \(x \in {\mathscr {M}}\), denoted by \(\mathrm {grad} f(x)\), is the element of \(T_x({\mathscr {M}})\) satisfying \(\langle \mathrm {grad}f(x), \zeta \rangle _x = Df_x[\zeta ]\) for all \(\zeta \in T_x({\mathscr {M}})\). Here, \(Df_x[\zeta ]\) denotes the directional derivative of f at x in the direction of \(\zeta \). The interested reader is referred to [1] for more details on how the gradient of a function on Grassmann manifolds can be computed.
 
3
Another situation where this applies in Computer Vision is the study of the essential manifold, which may be envisaged as the coset space of \(SO(3) \times SO(3)\) modulo a subgroup isomorphic to SO(2). For details see [25].
 
4
O(d) has dimension \(d(d-1)/2\), since its Lie algebra is the set of \(n\times n\) skew-symmetric matrices.
 
5
In our experiments, we observed that the projection kernel almost always outperforms the Binet–Cauchy kernel.
 
Literatur
1.
Zurück zum Zitat P.A. Absil, R. Mahony, R. Sepulchre, Optimization Algorithms on Matrix Manifolds (Princeton University Press, Princeton, 2008)CrossRefMATH P.A. Absil, R. Mahony, R. Sepulchre, Optimization Algorithms on Matrix Manifolds (Princeton University Press, Princeton, 2008)CrossRefMATH
2.
Zurück zum Zitat M. Aharon, M. Elad, A. Bruckstein, K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)CrossRef M. Aharon, M. Elad, A. Bruckstein, K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)CrossRef
3.
Zurück zum Zitat V. Arsigny, P. Fillard, X. Pennec, N. Ayache, Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56(2), 411–421 (2006)CrossRef V. Arsigny, P. Fillard, X. Pennec, N. Ayache, Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56(2), 411–421 (2006)CrossRef
4.
Zurück zum Zitat R. Basri, D.W. Jacobs, Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 218–233 (2003)CrossRef R. Basri, D.W. Jacobs, Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 218–233 (2003)CrossRef
5.
Zurück zum Zitat E. Begelfor, M. Werman, Affine invariance revisited, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2006), pp. 2087–2094 E. Begelfor, M. Werman, Affine invariance revisited, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2006), pp. 2087–2094
6.
Zurück zum Zitat C. Berg, J.P.R. Christensen, P. Ressel, Harmonic Analysis on Semigroups (Springer, New York, 1984)CrossRefMATH C. Berg, J.P.R. Christensen, P. Ressel, Harmonic Analysis on Semigroups (Springer, New York, 1984)CrossRefMATH
7.
Zurück zum Zitat E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)MathSciNetCrossRefMATH E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)MathSciNetCrossRefMATH
8.
Zurück zum Zitat H.E. Cetingul, M.J. Wright, P.M. Thompson, R. Vidal, Segmentation of high angular resolution diffusion MRI using sparse Riemannian manifold clustering. IEEE Trans. Med. Imaging 33(2), 301–317 (2014)CrossRef H.E. Cetingul, M.J. Wright, P.M. Thompson, R. Vidal, Segmentation of high angular resolution diffusion MRI using sparse Riemannian manifold clustering. IEEE Trans. Med. Imaging 33(2), 301–317 (2014)CrossRef
9.
Zurück zum Zitat S. Chen, C. Sanderson, M. Harandi, B.C. Lovell, Improved image set classification via joint sparse approximated nearest subspaces, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013), pp. 452–459 S. Chen, C. Sanderson, M. Harandi, B.C. Lovell, Improved image set classification via joint sparse approximated nearest subspaces, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013), pp. 452–459
10.
Zurück zum Zitat N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2005), pp. 886–893 N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2005), pp. 886–893
12.
Zurück zum Zitat M. Elad, Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing (Springer, New York, 2010)CrossRefMATH M. Elad, Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing (Springer, New York, 2010)CrossRefMATH
13.
Zurück zum Zitat E. Elhamifar, R. Vidal, Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)CrossRef E. Elhamifar, R. Vidal, Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)CrossRef
14.
Zurück zum Zitat M. Faraki, M. Harandi, F. Porikli, More about VLAD: a leap from Euclidean to Riemannian manifolds, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015), pp. 4951–4960 M. Faraki, M. Harandi, F. Porikli, More about VLAD: a leap from Euclidean to Riemannian manifolds, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015), pp. 4951–4960
15.
Zurück zum Zitat K.A. Gallivan, A. Srivastava, X. Liu, P. Van Dooren, Efficient algorithms for inferences on Grassmann manifolds, in IEEE Workshop on Statistical Signal Processing (2003), pp. 315–318 K.A. Gallivan, A. Srivastava, X. Liu, P. Van Dooren, Efficient algorithms for inferences on Grassmann manifolds, in IEEE Workshop on Statistical Signal Processing (2003), pp. 315–318
16.
Zurück zum Zitat B. Gong, Y. Shi, F. Sha, K. Grauman, Geodesic flow kernel for unsupervised domain adaptation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012), pp. 2066–2073 B. Gong, Y. Shi, F. Sha, K. Grauman, Geodesic flow kernel for unsupervised domain adaptation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012), pp. 2066–2073
17.
Zurück zum Zitat R. Gopalan, R. Li, R. Chellappa, Unsupervised adaptation across domain shifts by generating intermediate data representations. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2288–2302 (2014). doi:10.1109/TPAMI.2013.249 R. Gopalan, R. Li, R. Chellappa, Unsupervised adaptation across domain shifts by generating intermediate data representations. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2288–2302 (2014). doi:10.​1109/​TPAMI.​2013.​249
18.
Zurück zum Zitat J. Hamm, D.D. Lee, Grassmann discriminant analysis: a unifying view on subspace-based learning, in Proceedings of the International Conference on Machine Learning (ICML) (2008), pp. 376–383 J. Hamm, D.D. Lee, Grassmann discriminant analysis: a unifying view on subspace-based learning, in Proceedings of the International Conference on Machine Learning (ICML) (2008), pp. 376–383
19.
Zurück zum Zitat M. Harandi, M. Salzmann, Riemannian coding and dictionary learning: kernels to the rescue, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015), pp. 3926–3935 M. Harandi, M. Salzmann, Riemannian coding and dictionary learning: kernels to the rescue, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015), pp. 3926–3935
20.
Zurück zum Zitat M. Harandi, R. Hartley, C. Shen, B. Lovell, C. Sanderson, Extrinsic methods for coding and dictionary learning on Grassmann manifolds. Int. J. Comput. Vis. 114(2–3), 113–136 (2015)MathSciNetCrossRef M. Harandi, R. Hartley, C. Shen, B. Lovell, C. Sanderson, Extrinsic methods for coding and dictionary learning on Grassmann manifolds. Int. J. Comput. Vis. 114(2–3), 113–136 (2015)MathSciNetCrossRef
21.
Zurück zum Zitat M.T. Harandi, M. Salzmann, S. Jayasumana, R. Hartley, H. Li, Expanding the family of Grassmannian kernels: an embedding perspective, in Proceedings of the European Conference on Computer Vision (ECCV), vol. 8695, Lecture Notes in Computer Science, ed. by D. Fleet, T. Pajdla, B. Schiele, T. Tuytelaars (Springer International Publishing, Cham, 2014), pp. 408–423. doi:10.1007/978-3-319-10584-0_27 M.T. Harandi, M. Salzmann, S. Jayasumana, R. Hartley, H. Li, Expanding the family of Grassmannian kernels: an embedding perspective, in Proceedings of the European Conference on Computer Vision (ECCV), vol. 8695, Lecture Notes in Computer Science, ed. by D. Fleet, T. Pajdla, B. Schiele, T. Tuytelaars (Springer International Publishing, Cham, 2014), pp. 408–423. doi:10.​1007/​978-3-319-10584-0_​27
22.
Zurück zum Zitat M.T. Harandi, R. Hartley, B.C. Lovell, C. Sanderson, Sparse coding on symmetric positive definite manifolds using Bregman divergences. IEEE Trans. Neural Netw. Learn. Syst. (TNNLS) PP(99), 1–1 (2015) M.T. Harandi, R. Hartley, B.C. Lovell, C. Sanderson, Sparse coding on symmetric positive definite manifolds using Bregman divergences. IEEE Trans. Neural Netw. Learn. Syst. (TNNLS) PP(99), 1–1 (2015)
24.
Zurück zum Zitat U. Helmke, K. Hper, J. Trumpf, Newton’s method on Gramann manifolds (2007) U. Helmke, K. Hper, J. Trumpf, Newton’s method on Gramann manifolds (2007)
25.
Zurück zum Zitat U. Helmke, K. Hüper, P.Y. Lee, J.B. Moore, Essential matrix estimation using Gauss-Newton iterations on a manifold. Int. J. Comput. Vis. 74(2), 117–136 (2007). doi:10.1007/s11263-006-0005-0 U. Helmke, K. Hüper, P.Y. Lee, J.B. Moore, Essential matrix estimation using Gauss-Newton iterations on a manifold. Int. J. Comput. Vis. 74(2), 117–136 (2007). doi:10.​1007/​s11263-006-0005-0
26.
Zurück zum Zitat J. Ho, Y. Xie, B. Vemuri, On a nonlinear generalization of sparse coding and dictionary learning, in Proceedings of the International Conference on Machine Learning (ICML) (2013), pp. 1480–1488 J. Ho, Y. Xie, B. Vemuri, On a nonlinear generalization of sparse coding and dictionary learning, in Proceedings of the International Conference on Machine Learning (ICML) (2013), pp. 1480–1488
27.
Zurück zum Zitat S. Jayasumana, R. Hartley, M. Salzmann, H. Li, M. Harandi, Kernel methods on Riemannian manifolds with Gaussian RBF kernels. IEEE Trans. Pattern Anal. Mach. Intell. 37(12), 2464–2477 (2015). doi:10.1109/TPAMI.2015.2414422 S. Jayasumana, R. Hartley, M. Salzmann, H. Li, M. Harandi, Kernel methods on Riemannian manifolds with Gaussian RBF kernels. IEEE Trans. Pattern Anal. Mach. Intell. 37(12), 2464–2477 (2015). doi:10.​1109/​TPAMI.​2015.​2414422
29.
Zurück zum Zitat J.M. Lee, Introduction to Smooth Manifolds, vol. 218 (Springer, New York, 2012)CrossRef J.M. Lee, Introduction to Smooth Manifolds, vol. 218 (Springer, New York, 2012)CrossRef
30.
Zurück zum Zitat J. Mairal, F. Bach, J. Ponce, G. Sapiro, A. Zisserman, Discriminative learned dictionaries for local image analysis, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2008), pp. 1–8 J. Mairal, F. Bach, J. Ponce, G. Sapiro, A. Zisserman, Discriminative learned dictionaries for local image analysis, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2008), pp. 1–8
31.
Zurück zum Zitat J. Mairal, M. Elad, G. Sapiro, Sparse representation for color image restoration. IEEE Trans. Image Process. (TIP) 17(1), 53–69 (2008)MathSciNetCrossRefMATH J. Mairal, M. Elad, G. Sapiro, Sparse representation for color image restoration. IEEE Trans. Image Process. (TIP) 17(1), 53–69 (2008)MathSciNetCrossRefMATH
32.
Zurück zum Zitat J.H. Manton, A globally convergent numerical algorithm for computing the centre of mass on compact lie groups. Int. Conf. Control Autom. Robot. Vis. 3, 2211–2216 (2004) J.H. Manton, A globally convergent numerical algorithm for computing the centre of mass on compact lie groups. Int. Conf. Control Autom. Robot. Vis. 3, 2211–2216 (2004)
33.
Zurück zum Zitat B.A. Olshausen, D.J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996)CrossRef B.A. Olshausen, D.J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996)CrossRef
34.
Zurück zum Zitat R. Ramamoorthi, Analytic PCA construction for theoretical analysis of lighting variability in images of a Lambertian object. IEEE Trans. Pattern Anal. Mach. Intell. 24(10), 1322–1333 (2002)CrossRef R. Ramamoorthi, Analytic PCA construction for theoretical analysis of lighting variability in images of a Lambertian object. IEEE Trans. Pattern Anal. Mach. Intell. 24(10), 1322–1333 (2002)CrossRef
35.
Zurück zum Zitat B. Schölkopf, R. Herbrich, A.J. Smola, A generalized representer theorem, Computational Learning Theory (Springer, New York, 2001), pp. 416–426CrossRef B. Schölkopf, R. Herbrich, A.J. Smola, A generalized representer theorem, Computational Learning Theory (Springer, New York, 2001), pp. 416–426CrossRef
36.
Zurück zum Zitat J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis (Cambridge University Press, Cambridge, 2004)CrossRefMATH J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis (Cambridge University Press, Cambridge, 2004)CrossRefMATH
37.
Zurück zum Zitat S. Shirazi, M. Harandi, B. Lovell, C. Sanderson, Object tracking via non-Euclidean geometry: a Grassmann approach, in IEEE Winter Conference on Applications of Computer Vision (WACV) (2014), pp. 901–908. doi:10.1109/WACV.2014.6836008 S. Shirazi, M. Harandi, B. Lovell, C. Sanderson, Object tracking via non-Euclidean geometry: a Grassmann approach, in IEEE Winter Conference on Applications of Computer Vision (WACV) (2014), pp. 901–908. doi:10.​1109/​WACV.​2014.​6836008
38.
Zurück zum Zitat I. Steinwart, A. Christmann, Support Vector Machines (Springer, Berlin, 2008) I. Steinwart, A. Christmann, Support Vector Machines (Springer, Berlin, 2008)
39.
Zurück zum Zitat R. Subbarao, P. Meer, Nonlinear mean shift over Riemannian manifolds. Int. J. Comput. Vis. 84(1), 1–20 (2009)CrossRef R. Subbarao, P. Meer, Nonlinear mean shift over Riemannian manifolds. Int. J. Comput. Vis. 84(1), 1–20 (2009)CrossRef
40.
Zurück zum Zitat R. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58, 267–288 (1996) R. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58, 267–288 (1996)
41.
Zurück zum Zitat P. Turaga, A. Veeraraghavan, A. Srivastava, R. Chellappa, Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2273–2286 (2011) P. Turaga, A. Veeraraghavan, A. Srivastava, R. Chellappa, Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2273–2286 (2011)
42.
Zurück zum Zitat R. Vemulapalli, J.K. Pillai, R. Chellappa, Kernel learning for extrinsic classification of manifold features, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013), pp. 1782–1789 R. Vemulapalli, J.K. Pillai, R. Chellappa, Kernel learning for extrinsic classification of manifold features, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013), pp. 1782–1789
43.
Zurück zum Zitat J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, Y. Gong, Locality-constrained linear coding for image classification, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2010), pp. 3360–3367 J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, Y. Gong, Locality-constrained linear coding for image classification, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2010), pp. 3360–3367
44.
Zurück zum Zitat Y. Wang, G. Mori, Human action recognition by semilatent topic models. IEEE Trans. Pattern Anal. Mach. Intell. 31(10), 1762–1774 (2009) Y. Wang, G. Mori, Human action recognition by semilatent topic models. IEEE Trans. Pattern Anal. Mach. Intell. 31(10), 1762–1774 (2009)
45.
Zurück zum Zitat L. Wolf, A. Shashua, Learning over sets using kernel principal angles. J. Mach. Learn. Res. 4, 913–931 (2003)MathSciNetMATH L. Wolf, A. Shashua, Learning over sets using kernel principal angles. J. Mach. Learn. Res. 4, 913–931 (2003)MathSciNetMATH
46.
Zurück zum Zitat J. Wright, A.Y. Yang, A. Ganesh, S.S. Sastry, Y. Ma, Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009) J. Wright, A.Y. Yang, A. Ganesh, S.S. Sastry, Y. Ma, Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)
47.
Zurück zum Zitat J. Wright, Y. Ma, J. Mairal, G. Sapiro, T.S. Huang, S. Yan, Sparse representation for computer vision and pattern recognition. Proc. IEEE 98(6), 1031–1044 (2010)CrossRef J. Wright, Y. Ma, J. Mairal, G. Sapiro, T.S. Huang, S. Yan, Sparse representation for computer vision and pattern recognition. Proc. IEEE 98(6), 1031–1044 (2010)CrossRef
48.
Zurück zum Zitat J. Yang, K. Yu, Y. Gong, T. Huang, Linear spatial pyramid matching using sparse coding for image classification, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009), pp. 1794–1801 J. Yang, K. Yu, Y. Gong, T. Huang, Linear spatial pyramid matching using sparse coding for image classification, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009), pp. 1794–1801
Metadaten
Titel
Dictionary Learning on Grassmann Manifolds
verfasst von
Mehrtash Harandi
Richard Hartley
Mathieu Salzmann
Jochen Trumpf
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-45026-1_6

Premium Partner