Skip to main content
Erschienen in: International Journal of Steel Structures 1/2021

17.10.2020

Differences in the Acoustic Emission Characteristics of 345 MPa Normal-Strength Steel and 460 MPa High-Strength Steel

verfasst von: Yiting Yang, Yan Wang, Kehao Li

Erschienen in: International Journal of Steel Structures | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study characterized 345 MPa normal-strength steel (NSS) and 460 MPa high-strength steel (HSS) with the acoustic emission (AE) technique. Pencil lead break (PLB) and tensile tests were performed, and the generated AE signals were recorded. The AE signals from the PLB tests were converted into the frequency and time-frequency domains via a fast Fourier transform (FFT) and wavelet transform. The AE signals generated during the tensile process were divided into four stages for analysis. The AE parameters, such as the counts, amplitude, hit and duration, were extracted from the signals. An FFT was conducted to obtain the features of frequency spectrum at each stage. The comparisons revealed the similarities and differences in the AE characteristics between the two steels. It was found that the energy of the AE signals for the 460 MPa HSS was less overall than that of the 345 MPa NSS. The analysis results indicated that the AE technique is a method that can potentially be used to distinguish the two steels, and additional studies for accurate identification are needed. As 460 MPa HSS is being widely used but related AE studies are limited, this study provides data for additional investigations of the damage in HSS structures with the AE method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat ASTM E976-15. (2015). Standard guide for determining the reproducibility of acoustic emission sensor response. West Conshohocken: American Society of Testing Materials. ASTM E976-15. (2015). Standard guide for determining the reproducibility of acoustic emission sensor response. West Conshohocken: American Society of Testing Materials.
Zurück zum Zitat Babu, M. N., Mukhopadhyay, C. K., Sasikala, G., Albert, S. K., Bhaduri, A. K., Jayakumar, T., et al. (2016). Study of fatigue crack growth in RAFM steel using acoustic emission technique. Journal of Constructional Steel Research, 126, 107–116.CrossRef Babu, M. N., Mukhopadhyay, C. K., Sasikala, G., Albert, S. K., Bhaduri, A. K., Jayakumar, T., et al. (2016). Study of fatigue crack growth in RAFM steel using acoustic emission technique. Journal of Constructional Steel Research, 126, 107–116.CrossRef
Zurück zum Zitat Dou, Y. T., Xu, X. L., Wang, W., & Pang, S. Q. (2011). The study of identification method for the welding defect source of low-alloy high-strength steel based on AE technology. Key Engineering Materials, 467–469, 1580–1585.CrossRef Dou, Y. T., Xu, X. L., Wang, W., & Pang, S. Q. (2011). The study of identification method for the welding defect source of low-alloy high-strength steel based on AE technology. Key Engineering Materials, 467–469, 1580–1585.CrossRef
Zurück zum Zitat Droubi, M. G., Faisal, N. H., Orr, F., Steel, J. A., & El-Shaib, M. (2017). Acoustic emission method for defect detection and identification in carbon steel welded joints. Journal of Constructional Steel Research, 134, 28–37.CrossRef Droubi, M. G., Faisal, N. H., Orr, F., Steel, J. A., & El-Shaib, M. (2017). Acoustic emission method for defect detection and identification in carbon steel welded joints. Journal of Constructional Steel Research, 134, 28–37.CrossRef
Zurück zum Zitat Fan, X., Hu, S., Lu, J., & Wei, C. (2016). Acoustic emission properties of concrete on dynamic tensile test. Construction and Building Materials, 114, 66–75.CrossRef Fan, X., Hu, S., Lu, J., & Wei, C. (2016). Acoustic emission properties of concrete on dynamic tensile test. Construction and Building Materials, 114, 66–75.CrossRef
Zurück zum Zitat GB/T 228.1-2010. (2010). Metallic materials-tensile testing-part1: Method of test at room temperature. Beijing: Standards Press of China. (in Chinese). GB/T 228.1-2010. (2010). Metallic materials-tensile testing-part1: Method of test at room temperature. Beijing: Standards Press of China. (in Chinese).
Zurück zum Zitat GB/T 2975-2018. (2018). Steel and steel products-location and preparation of test pieces for mechanical testing. Beijing: Standards Press of China. (in Chinese). GB/T 2975-2018. (2018). Steel and steel products-location and preparation of test pieces for mechanical testing. Beijing: Standards Press of China. (in Chinese).
Zurück zum Zitat Han, Z., Luo, H., Cao, J., & Wang, H. (2011). Acoustic emission during fatigue crack propagation in a micro-alloyed steel and welds. Materials Science and Engineering: A, 528(25–26), 7751–7756.CrossRef Han, Z., Luo, H., Cao, J., & Wang, H. (2011). Acoustic emission during fatigue crack propagation in a micro-alloyed steel and welds. Materials Science and Engineering: A, 528(25–26), 7751–7756.CrossRef
Zurück zum Zitat He, K., Liu, X., Yang, Q., & Chen, Y. (2017). An extraction method of welding crack acoustic emission signal using harmonic analysis. Measurement, 103, 311–320.CrossRef He, K., Liu, X., Yang, Q., & Chen, Y. (2017). An extraction method of welding crack acoustic emission signal using harmonic analysis. Measurement, 103, 311–320.CrossRef
Zurück zum Zitat Hensman, J., Worden, K., Eaton, M., Pullin, R., Holford, K., & Evans, S. (2011). Spatial scanning for anomaly detection in acoustic emission testing of an aerospace structure. Mechanical Systems and Signal Processin, 25(7), 2462–2474.CrossRef Hensman, J., Worden, K., Eaton, M., Pullin, R., Holford, K., & Evans, S. (2011). Spatial scanning for anomaly detection in acoustic emission testing of an aerospace structure. Mechanical Systems and Signal Processin, 25(7), 2462–2474.CrossRef
Zurück zum Zitat Hopwood, T., II., & Havens, J. H. (1978). Acoustic emission monitoring of weldments. Journal of Testing & Evaluation, 7(4), 7. Hopwood, T., II., & Havens, J. H. (1978). Acoustic emission monitoring of weldments. Journal of Testing & Evaluation, 7(4), 7.
Zurück zum Zitat Hsu, N. N., & Breckenridge, F. R. (1981). Characterization and calibration of acoustic emission sensors. Materials Evaluation, 39(1), 60–68. Hsu, N. N., & Breckenridge, F. R. (1981). Characterization and calibration of acoustic emission sensors. Materials Evaluation, 39(1), 60–68.
Zurück zum Zitat Izotov, V. I., & Pozdnyakov, V. A., Yanenko, L., Getmanova, E. V., M. E., and Philippov, G. A. (2008). Evolution of the dislocation structure and the formation of fatigue microcracks in pearlitic-ferritic steels. The Physics of Metals and Metallography, 105(5), 517–527.CrossRef Izotov, V. I., & Pozdnyakov, V. A., Yanenko, L., Getmanova, E. V., M. E., and Philippov, G. A. (2008). Evolution of the dislocation structure and the formation of fatigue microcracks in pearlitic-ferritic steels. The Physics of Metals and Metallography, 105(5), 517–527.CrossRef
Zurück zum Zitat Kasai, N., Utatsu, K., Park, S., Kitsukawa, S., & Sekine, K. (2009). Correlation between corrosion rate and AE signal in an acidic environment for mild steel. Corrosion Science, 51(8), 1679–1684.CrossRef Kasai, N., Utatsu, K., Park, S., Kitsukawa, S., & Sekine, K. (2009). Correlation between corrosion rate and AE signal in an acidic environment for mild steel. Corrosion Science, 51(8), 1679–1684.CrossRef
Zurück zum Zitat Lee, C. S., Huh, J. H., Li, D. M., & Shin, D. H. (1999). Acoustic emission behavior during tensile tests of low carbon steel welds. ISIJ International, 39(4), 365–370.CrossRef Lee, C. S., Huh, J. H., Li, D. M., & Shin, D. H. (1999). Acoustic emission behavior during tensile tests of low carbon steel welds. ISIJ International, 39(4), 365–370.CrossRef
Zurück zum Zitat Long, X., Li, Q., & He, C., et al. (2017). Acoustic emission monitoring and evaluation for rolled steel damage under different tensile rates. Journal of Vibration and Shock, 36, 219–225. (in Chinese). Long, X., Li, Q., & He, C., et al. (2017). Acoustic emission monitoring and evaluation for rolled steel damage under different tensile rates. Journal of Vibration and Shock, 36, 219–225. (in Chinese).
Zurück zum Zitat Mao, W., Yang, Y., & Lin, W. (2019). An acoustic emission characterization of the failure process of shallow foundation resting on sandy soils. Ultrasonics, 93, 107–111.CrossRef Mao, W., Yang, Y., & Lin, W. (2019). An acoustic emission characterization of the failure process of shallow foundation resting on sandy soils. Ultrasonics, 93, 107–111.CrossRef
Zurück zum Zitat Merson, E. D., Krishtal, M. M., & Merson, D. L., et al. (2012). Effect of strain rate on acoustic emission during hydrogen assisted cracking in high carbon steel. Materials Science and Engineering: A, 550, 408–417.CrossRef Merson, E. D., Krishtal, M. M., & Merson, D. L., et al. (2012). Effect of strain rate on acoustic emission during hydrogen assisted cracking in high carbon steel. Materials Science and Engineering: A, 550, 408–417.CrossRef
Zurück zum Zitat Nguyen-Tat, T., Ranaivomanana, N., & Balayssac, J. (2018). Characterization of damage in concrete beams under bending with acoustic emission technique (AET). Construction and Building Materials, 187, 487–500.CrossRef Nguyen-Tat, T., Ranaivomanana, N., & Balayssac, J. (2018). Characterization of damage in concrete beams under bending with acoustic emission technique (AET). Construction and Building Materials, 187, 487–500.CrossRef
Zurück zum Zitat Shi, G., Hu, F., & Shi, Y. (2014). Recent research advances of high strength steel structures and codification of design specification in China. International Journal of Steel Structures, 14, 873–887.CrossRef Shi, G., Hu, F., & Shi, Y. (2014). Recent research advances of high strength steel structures and codification of design specification in China. International Journal of Steel Structures, 14, 873–887.CrossRef
Zurück zum Zitat Thirumalaiselvi, A., & Sasmal, S. (2019). Acoustic emission monitoring and classification of signals in cement composites during early-age hydration. Construction and Building Materials, 196, 411–427.CrossRef Thirumalaiselvi, A., & Sasmal, S. (2019). Acoustic emission monitoring and classification of signals in cement composites during early-age hydration. Construction and Building Materials, 196, 411–427.CrossRef
Zurück zum Zitat Ucak, A., & Tsopelas, P. (2011). Constitutive model for cyclic response of structural steels with yield plateau. Journal of Structural Engineering, 137(2), 195–206.CrossRef Ucak, A., & Tsopelas, P. (2011). Constitutive model for cyclic response of structural steels with yield plateau. Journal of Structural Engineering, 137(2), 195–206.CrossRef
Zurück zum Zitat Ucak, A., & Tsopelas, P. (2012). Accurate modeling of the cyclic response of structural components constructed of steel with yield plateau. Engineering Structures, 35, 272–280.CrossRef Ucak, A., & Tsopelas, P. (2012). Accurate modeling of the cyclic response of structural components constructed of steel with yield plateau. Engineering Structures, 35, 272–280.CrossRef
Zurück zum Zitat Wang, W., Zhang, L., & He, P. (2018). A numerical investigation on restrained high strength Q460 steel beams including creep effect. International Journal of Steel Structures, 18, 1497–1507.CrossRef Wang, W., Zhang, L., & He, P. (2018). A numerical investigation on restrained high strength Q460 steel beams including creep effect. International Journal of Steel Structures, 18, 1497–1507.CrossRef
Zurück zum Zitat Wevers, M. (1997). Listening to the sound of materials: Acoustic emission for the analysis of material behavior. NDT and E International, 30(02), 99–106.CrossRef Wevers, M. (1997). Listening to the sound of materials: Acoustic emission for the analysis of material behavior. NDT and E International, 30(02), 99–106.CrossRef
Zurück zum Zitat Yang, Y., Wang, Y., Yang, F., & An, Q. (2019). Influence of weld details on fracture behavior of connections using high-strength steel. Journal of Constructional Steel Research, 153, 578–587.CrossRef Yang, Y., Wang, Y., Yang, F., & An, Q. (2019). Influence of weld details on fracture behavior of connections using high-strength steel. Journal of Constructional Steel Research, 153, 578–587.CrossRef
Zurück zum Zitat Yu, J., Ziehl, P., Matta, F., & Pollock, A. (2013). Acoustic emission detection of fatigue damage in cruciform welded joints. Journal of Constructional Steel Research, 86, 85–91.CrossRef Yu, J., Ziehl, P., Matta, F., & Pollock, A. (2013). Acoustic emission detection of fatigue damage in cruciform welded joints. Journal of Constructional Steel Research, 86, 85–91.CrossRef
Zurück zum Zitat Yu, J., Ziehl, P., Zárate, B., & Caicedo, J. (2011). Prediction of fatigue crack growth in steel bridge components using acoustic emission. Journal of Constructional Steel Research, 67, 1254–1260.CrossRef Yu, J., Ziehl, P., Zárate, B., & Caicedo, J. (2011). Prediction of fatigue crack growth in steel bridge components using acoustic emission. Journal of Constructional Steel Research, 67, 1254–1260.CrossRef
Metadaten
Titel
Differences in the Acoustic Emission Characteristics of 345 MPa Normal-Strength Steel and 460 MPa High-Strength Steel
verfasst von
Yiting Yang
Yan Wang
Kehao Li
Publikationsdatum
17.10.2020
Verlag
Korean Society of Steel Construction
Erschienen in
International Journal of Steel Structures / Ausgabe 1/2021
Print ISSN: 1598-2351
Elektronische ISSN: 2093-6311
DOI
https://doi.org/10.1007/s13296-020-00423-4

Weitere Artikel der Ausgabe 1/2021

International Journal of Steel Structures 1/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.