Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2015

01.06.2015

Differential effects of conductances on the phase resetting curve of a bursting neuronal oscillator

verfasst von: Wafa Soofi, Astrid A. Prinz

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The intrinsically oscillating neurons in the crustacean pyloric circuit have membrane conductances that influence their spontaneous activity patterns and responses to synaptic activity. The relationship between the magnitudes of these membrane conductances and the response of the oscillating neurons to synaptic input has not yet been fully or systematically explored. We examined this relationship using the phase resetting curve (PRC), which summarizes the change in the cycle period of a neuronal oscillator as a function of the input’s timing within the oscillation. We first utilized a large database of single-compartment model neurons to determine the effect of individual membrane conductances on PRC shape; we found that the effects vary across conductance space, but on average, the hyperpolarization-activated and leak conductances advance the PRC. We next investigated how membrane conductances affect PRCs of the isolated pacemaker kernel in the pyloric circuit of Cancer borealis by: (1) tabulating PRCs while using dynamic clamp to artificially add varying levels of specific conductances, and (2) tabulating PRCs before and after blocking the endogenous hyperpolarization-activated current. We additionally used a previously described four-compartment model to determine how the location of the hyperpolarization-activated conductance influences that current’s effect on the PRC. We report that while dynamic-clamp-injected leak current has much smaller effects on the PRC than suggested by the single-compartment model, an increase in the hyperpolarization-activated conductance both advances and reduces the noisiness of the PRC in the pacemaker kernel of the pyloric circuit in both modeling and experimental studies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ball, J. M., Franklin, C. C., Tobin, A. E., Schulz, D. J., & Nair, S. S. (2010). Coregulation of ion channel conductances preserves output in a computational model of a crustacean cardiac motor neuron. The Journal of Neuroscience, 30(25), 8637–8649. doi:10.1523/JNEUROSCI. 6435-09.2010.PubMedCrossRef Ball, J. M., Franklin, C. C., Tobin, A. E., Schulz, D. J., & Nair, S. S. (2010). Coregulation of ion channel conductances preserves output in a computational model of a crustacean cardiac motor neuron. The Journal of Neuroscience, 30(25), 8637–8649. doi:10.​1523/​JNEUROSCI.​ 6435-09.​2010.PubMedCrossRef
Zurück zum Zitat Bose, A., Golowasch, J., Guan, Y., & Nadim, F. (2014). The role of linear and voltage-dependent ionic currents in the generation of slow wave oscillations. Journal of Computational Neuroscience. doi:10.1007/s10827-014-0498-4.PubMed Bose, A., Golowasch, J., Guan, Y., & Nadim, F. (2014). The role of linear and voltage-dependent ionic currents in the generation of slow wave oscillations. Journal of Computational Neuroscience. doi:10.​1007/​s10827-014-0498-4.PubMed
Zurück zum Zitat Brown, D. (1988). M currents. In T. Narahashi (Ed.), Ion channels (Vol. 1, pp. 55–99). New York: Plenum.CrossRef Brown, D. (1988). M currents. In T. Narahashi (Ed.), Ion channels (Vol. 1, pp. 55–99). New York: Plenum.CrossRef
Zurück zum Zitat Brown, G. L., & Eccles, J. C. (1934). The action of a single vagal volley on the rhythm of the heart beat. The Journal of Physiology, 82(2), 211–241.PubMedCentralPubMedCrossRef Brown, G. L., & Eccles, J. C. (1934). The action of a single vagal volley on the rhythm of the heart beat. The Journal of Physiology, 82(2), 211–241.PubMedCentralPubMedCrossRef
Zurück zum Zitat Chan, C. S., Shigemoto, R., Mercer, J. N., & Surmeier, D. J. (2004). HCN2 and HCN1 channels govern the regularity of autonomous pacemaking and synaptic resetting in globus pallidus neurons. The Journal of Neuroscience, 24(44), 9921–9932. doi:10.1523/JNEUROSCI. 2162-04.2004.PubMedCrossRef Chan, C. S., Shigemoto, R., Mercer, J. N., & Surmeier, D. J. (2004). HCN2 and HCN1 channels govern the regularity of autonomous pacemaking and synaptic resetting in globus pallidus neurons. The Journal of Neuroscience, 24(44), 9921–9932. doi:10.​1523/​JNEUROSCI.​ 2162-04.​2004.PubMedCrossRef
Zurück zum Zitat Chen, K., Aradi, I., Thon, N., Eghbal-Ahmadi, M., Baram, T. Z., & Soltesz, I. (2001). Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability. Nature Medicine, 7(3), 331–337. doi:10.1038/85480.PubMedCentralPubMedCrossRef Chen, K., Aradi, I., Thon, N., Eghbal-Ahmadi, M., Baram, T. Z., & Soltesz, I. (2001). Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability. Nature Medicine, 7(3), 331–337. doi:10.​1038/​85480.PubMedCentralPubMedCrossRef
Zurück zum Zitat Crook, S. M., Ermentrout, G. B., & Bower, J. M. (1998). Dendritic and synaptic effects in systems of coupled cortical oscillators. Journal of Computational Neuroscience, 5, 315–329.PubMedCrossRef Crook, S. M., Ermentrout, G. B., & Bower, J. M. (1998). Dendritic and synaptic effects in systems of coupled cortical oscillators. Journal of Computational Neuroscience, 5, 315–329.PubMedCrossRef
Zurück zum Zitat Dando, M. R., & Selverston, A. I. (1972). Command fibres from the supra-oesophageal ganglion to the stomatogastric ganglion in Panulirus argus. Journal of Comparative Physiology, 78, 138–175.CrossRef Dando, M. R., & Selverston, A. I. (1972). Command fibres from the supra-oesophageal ganglion to the stomatogastric ganglion in Panulirus argus. Journal of Comparative Physiology, 78, 138–175.CrossRef
Zurück zum Zitat Day, M., Carr, D. B., Ulrich, S., Ilijic, E., Tkatch, T., & Surmeier, D. J. (2005). Dendritic excitability of mouse frontal cortex pyramidal neurons is shaped by the interaction among HCN, Kir2, and Kleak channels. The Journal of Neuroscience, 25(38), 8776–8787. doi:10.1523/JNEUROSCI. 2650-05.2005.PubMedCrossRef Day, M., Carr, D. B., Ulrich, S., Ilijic, E., Tkatch, T., & Surmeier, D. J. (2005). Dendritic excitability of mouse frontal cortex pyramidal neurons is shaped by the interaction among HCN, Kir2, and Kleak channels. The Journal of Neuroscience, 25(38), 8776–8787. doi:10.​1523/​JNEUROSCI.​ 2650-05.​2005.PubMedCrossRef
Zurück zum Zitat Dickinson, P. S., & Marder, E. (1989). Peptidergic modulation of a multioscillator system in the lobster. I. Activation of the cardiac sac motor pattern by the neuropeptides proctolin and red pigment-concentrating hormone. Journal of Neurophysiology, 61(4), 833–844.PubMed Dickinson, P. S., & Marder, E. (1989). Peptidergic modulation of a multioscillator system in the lobster. I. Activation of the cardiac sac motor pattern by the neuropeptides proctolin and red pigment-concentrating hormone. Journal of Neurophysiology, 61(4), 833–844.PubMed
Zurück zum Zitat Dorval, A. D., Christini, D. J., & White, J. A. (2001). Real-Time linux dynamic clamp: a fast and flexible way to construct virtual ion channels in living cells. Annals of Biomedical Engineering, 29(10), 897–907.PubMedCrossRef Dorval, A. D., Christini, D. J., & White, J. A. (2001). Real-Time linux dynamic clamp: a fast and flexible way to construct virtual ion channels in living cells. Annals of Biomedical Engineering, 29(10), 897–907.PubMedCrossRef
Zurück zum Zitat Draper, N., & Smith, H. (1981). Applied regression analysis (2nd ed.). New York: Wiley. Draper, N., & Smith, H. (1981). Applied regression analysis (2nd ed.). New York: Wiley.
Zurück zum Zitat Ermentrout, B., Beverlin, B., & Netoff, T. (2012). Phase response curves to measure ion channel effects on neurons. In N. Schultheiss, A. A. Prinz, & R. J. Butera (Eds.), Phase response curves in neuroscience. New York: Springer. Ermentrout, B., Beverlin, B., & Netoff, T. (2012). Phase response curves to measure ion channel effects on neurons. In N. Schultheiss, A. A. Prinz, & R. J. Butera (Eds.), Phase response curves in neuroscience. New York: Springer.
Zurück zum Zitat Flamm, R. E., & Harris-Warrick, R. M. (1986a). Aminergic modulation in lobster stomatogastric ganglion. I. Effects on motor pattern and activity of neurons within the pyloric circuit. Journal of Neurophysiology, 55(5), 847–865.PubMed Flamm, R. E., & Harris-Warrick, R. M. (1986a). Aminergic modulation in lobster stomatogastric ganglion. I. Effects on motor pattern and activity of neurons within the pyloric circuit. Journal of Neurophysiology, 55(5), 847–865.PubMed
Zurück zum Zitat Flamm, R. E., & Harris-Warrick, R. M. (1986b). Aminergic modulation in lobster stomatogastric ganglion. II. Target neurons of dopamine, octopamine, and serotonin within the pyloric circuit. Journal of Neurophysiology, 55(5), 866–881.PubMed Flamm, R. E., & Harris-Warrick, R. M. (1986b). Aminergic modulation in lobster stomatogastric ganglion. II. Target neurons of dopamine, octopamine, and serotonin within the pyloric circuit. Journal of Neurophysiology, 55(5), 866–881.PubMed
Zurück zum Zitat Goldman, M. S., Golowasch, J., Marder, E., & Abbott, L. F. (2001). Global structure, robustness, and modulation of neuronal models. The Journal of Neuroscience, 21(14), 5229–5238.PubMed Goldman, M. S., Golowasch, J., Marder, E., & Abbott, L. F. (2001). Global structure, robustness, and modulation of neuronal models. The Journal of Neuroscience, 21(14), 5229–5238.PubMed
Zurück zum Zitat Golomb, D., & Amitai, Y. (1997). Propagating neuronal discharges in neocortical slices: computational and experimental study. Journal of Neurophysiology, 78(3), 1199–1211.PubMed Golomb, D., & Amitai, Y. (1997). Propagating neuronal discharges in neocortical slices: computational and experimental study. Journal of Neurophysiology, 78(3), 1199–1211.PubMed
Zurück zum Zitat Golowasch, J., Abbott, L. F., & Marder, E. (1999). Activity-dependent regulation of potassium currents in an identified neuron of the stomatogastric ganglion of the crab Cancer borealis. The Journal of Neuroscience, 19(20), RC33.PubMed Golowasch, J., Abbott, L. F., & Marder, E. (1999). Activity-dependent regulation of potassium currents in an identified neuron of the stomatogastric ganglion of the crab Cancer borealis. The Journal of Neuroscience, 19(20), RC33.PubMed
Zurück zum Zitat Golowasch, J., Goldman, M. S., Abbott, L. F., & Marder, E. (2002). Failure of averaging in the construction of a conductance-based neuron model. Journal of Neurophysiology, 87(2), 1129–1131.PubMed Golowasch, J., Goldman, M. S., Abbott, L. F., & Marder, E. (2002). Failure of averaging in the construction of a conductance-based neuron model. Journal of Neurophysiology, 87(2), 1129–1131.PubMed
Zurück zum Zitat Gutfreund, Y., & Segev, I. (1995). Subthreshold oscillations and resonant frequency in guinea‐pig cortical neurons: physiology and modelling. The Journal of Physiology, 483(3), 621–640. Gutfreund, Y., & Segev, I. (1995). Subthreshold oscillations and resonant frequency in guinea‐pig cortical neurons: physiology and modelling. The Journal of Physiology, 483(3), 621–640.
Zurück zum Zitat Harris-Warrick, R. M., Coniglio, L. M., Levini, R. M., Gueron, S. H. A. Y., & Guckenheimer, J. O. H. N. (1995). Dopamine modulation of two subthreshold currents produces phase shifts in activity of an identified motoneuron. Journal of Neurophysiology, 74(4), 1404–1420.PubMed Harris-Warrick, R. M., Coniglio, L. M., Levini, R. M., Gueron, S. H. A. Y., & Guckenheimer, J. O. H. N. (1995). Dopamine modulation of two subthreshold currents produces phase shifts in activity of an identified motoneuron. Journal of Neurophysiology, 74(4), 1404–1420.PubMed
Zurück zum Zitat Harris-Warrick, R. M., Johnson, B. R., Peck, J. H., Kloppenburg, P., Ayali, A., & Skarbinski, J. (1998). Distributed effects of dopamine modulation in the crustacean pyloric network. Annals of the New York Academy of Sciences, 860(1), 155–167.PubMedCrossRef Harris-Warrick, R. M., Johnson, B. R., Peck, J. H., Kloppenburg, P., Ayali, A., & Skarbinski, J. (1998). Distributed effects of dopamine modulation in the crustacean pyloric network. Annals of the New York Academy of Sciences, 860(1), 155–167.PubMedCrossRef
Zurück zum Zitat Hille, B. (2001). Ion channels of excitable membranes (Vol. 507). Sunderland: Sinauer. Hille, B. (2001). Ion channels of excitable membranes (Vol. 507). Sunderland: Sinauer.
Zurück zum Zitat Hu, H., Vervaeke, K., & Storm, J. F. (2002). Two forms of electrical resonance at theta frequencies, generated by M-current, h-current and persistent Na+ current in rat hippocampal pyramidal cells. The Journal of Physiology, 545(Pt 3), 783–805.PubMedCentralPubMedCrossRef Hu, H., Vervaeke, K., & Storm, J. F. (2002). Two forms of electrical resonance at theta frequencies, generated by M-current, h-current and persistent Na+ current in rat hippocampal pyramidal cells. The Journal of Physiology, 545(Pt 3), 783–805.PubMedCentralPubMedCrossRef
Zurück zum Zitat Huguenard, J. R., & McCormick, D. A. (1992). Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. Journal of Neurophysiology, 68(4), 1373–1383.PubMed Huguenard, J. R., & McCormick, D. A. (1992). Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. Journal of Neurophysiology, 68(4), 1373–1383.PubMed
Zurück zum Zitat Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. (2013). Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. Journal of Experimental Social Psychology, 49(4), 764–766. doi:10.1016/J.Jesp.2013.03.013.CrossRef Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. (2013). Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. Journal of Experimental Social Psychology, 49(4), 764–766. doi:10.​1016/​J.​Jesp.​2013.​03.​013.CrossRef
Zurück zum Zitat Liu, Z., Golowasch, J., Marder, E., & Abbott, L. F. (1998). A model neuron with activity-dependent conductances regulated by multiple calcium sensors. The Journal of Neuroscience, 18(7), 2309–2320.PubMed Liu, Z., Golowasch, J., Marder, E., & Abbott, L. F. (1998). A model neuron with activity-dependent conductances regulated by multiple calcium sensors. The Journal of Neuroscience, 18(7), 2309–2320.PubMed
Zurück zum Zitat Maran, S. K., Sieling, F. H., Demla, K., Prinz, A. A., & Canavier, C. C. (2011). Responses of a bursting pacemaker to excitation reveal spatial segregation between bursting and spiking mechanisms. Journal of Computational Neuroscience, 31(2), 419–440. doi:10.1007/s10827-011-0319-y.PubMedCentralPubMedCrossRef Maran, S. K., Sieling, F. H., Demla, K., Prinz, A. A., & Canavier, C. C. (2011). Responses of a bursting pacemaker to excitation reveal spatial segregation between bursting and spiking mechanisms. Journal of Computational Neuroscience, 31(2), 419–440. doi:10.​1007/​s10827-011-0319-y.PubMedCentralPubMedCrossRef
Zurück zum Zitat McCormick, D. A., & Pape, H. C. (1990). Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. The Journal of Physiology, 431, 291–318.PubMedCentralPubMedCrossRef McCormick, D. A., & Pape, H. C. (1990). Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. The Journal of Physiology, 431, 291–318.PubMedCentralPubMedCrossRef
Zurück zum Zitat Miller, J. P., & Selverston, A. I. (1982). Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. IV. Network properties of pyloric system. Journal of Neurophysiology, 48(6), 1416–1432.PubMed Miller, J. P., & Selverston, A. I. (1982). Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. IV. Network properties of pyloric system. Journal of Neurophysiology, 48(6), 1416–1432.PubMed
Zurück zum Zitat Mulloney, B., & Selverston, A. I. (1974). Organization of the stomatogastric ganglion of the spiny lobster I. Neurons driving the lateral teeth. Journal of Comparative Physiology, 91, 1–32.CrossRef Mulloney, B., & Selverston, A. I. (1974). Organization of the stomatogastric ganglion of the spiny lobster I. Neurons driving the lateral teeth. Journal of Comparative Physiology, 91, 1–32.CrossRef
Zurück zum Zitat Nadim, F., Booth, V., Bose, A., & Manor, Y. (2003). Short-term synaptic dynamics promote phase maintenance in multi-phasic rhythms. Neurocomputing, 52, 79–87.CrossRef Nadim, F., Booth, V., Bose, A., & Manor, Y. (2003). Short-term synaptic dynamics promote phase maintenance in multi-phasic rhythms. Neurocomputing, 52, 79–87.CrossRef
Zurück zum Zitat Nusbaum, M. P., & Marder, E. (1988). A neuronal role for a crustacean red pigment concentrating hormone-like peptide: neuromodulation of the pyloric rhythm in the crab, Cancer borealis. Journal of Experimental Biology, 135(1), 165–181. Nusbaum, M. P., & Marder, E. (1988). A neuronal role for a crustacean red pigment concentrating hormone-like peptide: neuromodulation of the pyloric rhythm in the crab, Cancer borealis. Journal of Experimental Biology, 135(1), 165–181.
Zurück zum Zitat Ouyang, Q., Goeritz, M., & Harris-Warrick, R. M. (2007). Panulirus interruptus Ih-channel gene PIIH: modification of channel properties by alternative splicing and role in rhythmic activity. Journal of Neurophysiology, 97(6), 3880–3892. doi:10.1152/jn.00246.2007.PubMedCrossRef Ouyang, Q., Goeritz, M., & Harris-Warrick, R. M. (2007). Panulirus interruptus Ih-channel gene PIIH: modification of channel properties by alternative splicing and role in rhythmic activity. Journal of Neurophysiology, 97(6), 3880–3892. doi:10.​1152/​jn.​00246.​2007.PubMedCrossRef
Zurück zum Zitat Pinsker, H. M. (1977). Aplysia bursting neurons as endogenous oscillators. I. Phase-response curves for pulsed inhibitory synaptic input. Journal of Neurophysiology, 40(3), 527–543.PubMed Pinsker, H. M. (1977). Aplysia bursting neurons as endogenous oscillators. I. Phase-response curves for pulsed inhibitory synaptic input. Journal of Neurophysiology, 40(3), 527–543.PubMed
Zurück zum Zitat Pinsker, H. M., & Kandel, E. R. (1977). Short-term modulation of endogenous bursting rhythms by monosynaptic inhibition in Aplysia neurons: effects of contingent stimulation. Brain Research, 125(1), 51–64.PubMedCrossRef Pinsker, H. M., & Kandel, E. R. (1977). Short-term modulation of endogenous bursting rhythms by monosynaptic inhibition in Aplysia neurons: effects of contingent stimulation. Brain Research, 125(1), 51–64.PubMedCrossRef
Zurück zum Zitat Prinz, A. A., Billimoria, C. P., & Marder, E. (2003a). Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. Journal of Neurophysiology, 90(6), 3998–4015. doi:10.1152/jn.00641.2003.PubMedCrossRef Prinz, A. A., Billimoria, C. P., & Marder, E. (2003a). Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. Journal of Neurophysiology, 90(6), 3998–4015. doi:10.​1152/​jn.​00641.​2003.PubMedCrossRef
Zurück zum Zitat Prinz, A. A., Thirumalai, V., & Marder, E. (2003b). The functional consequences of changes in the strength and duration of synaptic inputs to oscillatory neurons. The Journal of Neuroscience, 23(3), 943–954.PubMed Prinz, A. A., Thirumalai, V., & Marder, E. (2003b). The functional consequences of changes in the strength and duration of synaptic inputs to oscillatory neurons. The Journal of Neuroscience, 23(3), 943–954.PubMed
Zurück zum Zitat Prinz, A. A., Abbott, L. F., & Marder, E. (2004a). The dynamic clamp comes of age. Trends in Neurosciences, 27(4), 218–224.PubMedCrossRef Prinz, A. A., Abbott, L. F., & Marder, E. (2004a). The dynamic clamp comes of age. Trends in Neurosciences, 27(4), 218–224.PubMedCrossRef
Zurück zum Zitat Schulz, D. J., Goaillard, J. M., & Marder, E. (2006). Variable channel expression in identified single and electrically coupled neurons in different animals. Nature Neuroscience, 9(3), 356–362. doi:10.1038/nn1639.PubMedCrossRef Schulz, D. J., Goaillard, J. M., & Marder, E. (2006). Variable channel expression in identified single and electrically coupled neurons in different animals. Nature Neuroscience, 9(3), 356–362. doi:10.​1038/​nn1639.PubMedCrossRef
Zurück zum Zitat Schulz, D. J., Goaillard, J. M., & Marder, E. E. (2007). Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression. Proceedings of the National Academy of Sciences of the United States of America, 104(32), 13187–13191. doi:10.1073/pnas.0705827104.PubMedCentralPubMedCrossRef Schulz, D. J., Goaillard, J. M., & Marder, E. E. (2007). Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression. Proceedings of the National Academy of Sciences of the United States of America, 104(32), 13187–13191. doi:10.​1073/​pnas.​0705827104.PubMedCentralPubMedCrossRef
Zurück zum Zitat Sharp, A. A., O’Neil, M. B., Abbott, L. F., & Marder, E. (1993a). The dynamic clamp: artificial conductances in biological neurons. Trends in Neurosciences, 16(10), 389–394.PubMedCrossRef Sharp, A. A., O’Neil, M. B., Abbott, L. F., & Marder, E. (1993a). The dynamic clamp: artificial conductances in biological neurons. Trends in Neurosciences, 16(10), 389–394.PubMedCrossRef
Zurück zum Zitat Sharp, A. A., O’Neil, M. B., Abbott, L. F., & Marder, E. (1993b). Dynamic clamp: computer-generated conductances in real neurons. Journal of Neurophysiology, 69(3), 992–995.PubMed Sharp, A. A., O’Neil, M. B., Abbott, L. F., & Marder, E. (1993b). Dynamic clamp: computer-generated conductances in real neurons. Journal of Neurophysiology, 69(3), 992–995.PubMed
Zurück zum Zitat Sieling, F. H., Canavier, C. C., & Prinz, A. A. (2009). Predictions of phase-locking in excitatory hybrid networks: excitation does not promote phase-locking in pattern-generating networks as reliably as inhibition. Journal of Neurophysiology, 102(1), 69–84. doi:10.1152/jn.00091.2009.PubMedCentralPubMedCrossRef Sieling, F. H., Canavier, C. C., & Prinz, A. A. (2009). Predictions of phase-locking in excitatory hybrid networks: excitation does not promote phase-locking in pattern-generating networks as reliably as inhibition. Journal of Neurophysiology, 102(1), 69–84. doi:10.​1152/​jn.​00091.​2009.PubMedCentralPubMedCrossRef
Zurück zum Zitat Sieling, F. H., Archila, S., Hooper, R., Canavier, C. C., & Prinz, A. A. (2012). Phase response theory extended to nonoscillatory network components. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 85(5 Pt 2), 056208.PubMedCentralCrossRef Sieling, F. H., Archila, S., Hooper, R., Canavier, C. C., & Prinz, A. A. (2012). Phase response theory extended to nonoscillatory network components. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 85(5 Pt 2), 056208.PubMedCentralCrossRef
Zurück zum Zitat Sober, S. J., & Sabes, P. N. (2003). Multisensory integration during motor planning. The Journal of Neuroscience, 23(18), 6982–6992.PubMed Sober, S. J., & Sabes, P. N. (2003). Multisensory integration during motor planning. The Journal of Neuroscience, 23(18), 6982–6992.PubMed
Zurück zum Zitat Stiefel, K. M., & Gutkin, B. S. (2012). Cholinergic neuromodulation controls PRC type in cortical pyramidal neurons. In N. W. Schultheiss, A. A. Prinz, & R. J. Butera (Eds.), Phase response curves in neuroscience (pp. 279–306). New York: Springer.CrossRef Stiefel, K. M., & Gutkin, B. S. (2012). Cholinergic neuromodulation controls PRC type in cortical pyramidal neurons. In N. W. Schultheiss, A. A. Prinz, & R. J. Butera (Eds.), Phase response curves in neuroscience (pp. 279–306). New York: Springer.CrossRef
Zurück zum Zitat Temporal, S., Desai, M., Khorkova, O., Varghese, G., Dai, A., Schulz, D. J., et al. (2012). Neuromodulation independently determines correlated channel expression and conductance levels in motor neurons of the stomatogastric ganglion. Journal of Neurophysiology, 107(2), 718–727. doi:10.1152/jn.00622.2011.PubMedCentralPubMedCrossRef Temporal, S., Desai, M., Khorkova, O., Varghese, G., Dai, A., Schulz, D. J., et al. (2012). Neuromodulation independently determines correlated channel expression and conductance levels in motor neurons of the stomatogastric ganglion. Journal of Neurophysiology, 107(2), 718–727. doi:10.​1152/​jn.​00622.​2011.PubMedCentralPubMedCrossRef
Zurück zum Zitat Thirumalai, V. (2002). Implications of cotransmission and neuromodulation for neural network function. PhD Thesis, Brandeis University, Waltham, MA. Thirumalai, V. (2002). Implications of cotransmission and neuromodulation for neural network function. PhD Thesis, Brandeis University, Waltham, MA.
Zurück zum Zitat Thirumalai, V., & Marder, E. (2002). Colocalized neuropeptides activate a central pattern generator by acting on different circuit targets. The Journal of Neuroscience, 22(5), 1874–1882.PubMed Thirumalai, V., & Marder, E. (2002). Colocalized neuropeptides activate a central pattern generator by acting on different circuit targets. The Journal of Neuroscience, 22(5), 1874–1882.PubMed
Zurück zum Zitat Thirumalai, V., Prinz, A. A., Johnson, C. D., & Marder, E. (2006). Red pigment concentrating hormone strongly enhances the strength of the feedback to the pyloric rhythm oscillator but has little effect on pyloric rhythm period. Journal of Neurophysiology, 95(3), 1762–1770.PubMedCrossRef Thirumalai, V., Prinz, A. A., Johnson, C. D., & Marder, E. (2006). Red pigment concentrating hormone strongly enhances the strength of the feedback to the pyloric rhythm oscillator but has little effect on pyloric rhythm period. Journal of Neurophysiology, 95(3), 1762–1770.PubMedCrossRef
Zurück zum Zitat Tryba, A. K., Pena, F., Lieske, S. P., Viemari, J. C., Thoby-Brisson, M., & Ramirez, J. M. (2008). Differential modulation of neural network and pacemaker activity underlying eupnea and sigh-breathing activities. Journal of Neurophysiology, 99(5), 2114–2125. doi:10.1152/jn.01192.2007.PubMedCrossRef Tryba, A. K., Pena, F., Lieske, S. P., Viemari, J. C., Thoby-Brisson, M., & Ramirez, J. M. (2008). Differential modulation of neural network and pacemaker activity underlying eupnea and sigh-breathing activities. Journal of Neurophysiology, 99(5), 2114–2125. doi:10.​1152/​jn.​01192.​2007.PubMedCrossRef
Zurück zum Zitat Turrigiano, G., LeMasson, G., & Marder, E. (1995). Selective regulation of current densities underlies spontaneous changes in the activity of cultured neurons. The Journal of Neuroscience, 15(5 Pt 1), 3640–3652.PubMed Turrigiano, G., LeMasson, G., & Marder, E. (1995). Selective regulation of current densities underlies spontaneous changes in the activity of cultured neurons. The Journal of Neuroscience, 15(5 Pt 1), 3640–3652.PubMed
Metadaten
Titel
Differential effects of conductances on the phase resetting curve of a bursting neuronal oscillator
verfasst von
Wafa Soofi
Astrid A. Prinz
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2015
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-015-0553-9

Weitere Artikel der Ausgabe 3/2015

Journal of Computational Neuroscience 3/2015 Zur Ausgabe