Skip to main content
Erschienen in: Wireless Personal Communications 2/2014

01.09.2014

Differential Space-Time Modulation Using DAPSK Over Rician Fading Channels

verfasst von: Chi-Hua Huang, Char-Dir Chung

Erschienen in: Wireless Personal Communications | Ausgabe 2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper studies differential space-time modulation using diversity-encoded differential amplitude and phase shift keying (DAPSK) for the multiple-input multiple-output (MIMO) system over independent but not identically distributed (inid) time-correlated Rician fading channels. An asymptotic maximum likelihood (AML) receiver is developed for differentially detecting diversity-encoded DAPSK symbol signals by operating on two consecutive received symbol blocks sequentially. Based on Beaulieu’s convergent series, the bit error probability (BEP) upper bound is analyzed for the AML receiver over inid time-correlated Rician fading channels. Particularly, an approximate BEP upper bound of the AML receiver is also derived for inid time-invariant Rayleigh fading channels with large received signal-to-noise power ratios. By virtue of this approximate bound, a design criterion is developed to determine the appropriate diversity encoding coefficients for the proposed DAPSK MIMO system. Numerical and simulation results show that the AML receiver for diversity-encoded DAPSK is nearly optimum when the average received signal-to-noise power ratios are high and the channel is heavily correlated fading and can provide better error performance than conventional noncoherent MIMO systems when the effect of non-ideal transmit power amplification is taken into account.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Notably, all entries of the transmitted symbol matrix for DUSTM using APSK-based OSTCC take value in irregular symbol constellations. However, its PAPR value is fixed by 3 dB [16].
 
2
As indicated in [23], the error performance of DAPSK is highly sensitive to the amplitude ring ratio \(\mu \) in single-input multiple-output antenna systems, especially when the number of amplitude rings is large. This amplitude ring ratio parameter will be optimized in Sect. 4 through minimizing the BEP upper bound developed therein.
 
3
The rows of Walsh Hadamard and discrete Fourier transform matrices can be used as the dispersion vectors in the paper.
 
4
When \(\mathcal {S}\) is given, \(|x_{k}^{(i-1)}|\) and \( d_{k}=x_{k}^{(i)}/x_{k}^{(i-1)}\) that are required in the following analysis are, respectively given by \(|x_{k}^{(i-1)}|\, =\lambda \mu ^{(\beta _{k}^{(a)}a^{(i-1)}+a_{k}^{(0)})_{N}}\) and \(d_{k}=\mu ^{(\beta _{k}^{(a)}(a^{(i-1)}+\varDelta a)_{N}+a_{k}^{(0)})_{N}-(\beta _{k}^{(a)}a^{(i-1)}+a_{k}^{(0)})_{N}}\exp \{\frac{j2\pi \beta _{k}^{(p)}\varDelta b}{M}\}\) provided with predetermined \(\beta _{k}^{(a)},\, \beta _{k}^{(p)}\), and \(a_{k}^{(0)}\) for \(k\in \mathcal {Z}_{L_{t}}^{+}\).
 
5
As shown in (11), \(|d_{k}|\, =\mu ^{(\beta _{k}^{(a)}(a^{(i-1)}+\varDelta a)_{N}+a_{k}^{(0)})_{N}-(\beta _{k}^{(a)}a^{(i-1)}+a_{k}^{(0)})_{N}}\) takes the form \(\mu ^{0}\) when \( \varDelta a=0\). When \(\varDelta a\ne 0\), it takes the form \(\mu ^{(\beta _{k}^{(a)}\varDelta a)_{N}}\) if \(|d_{k}|\, >1\) and \(\mu ^{(\beta _{k}^{(a)}\varDelta a)_{N}-N}\) if \(|d_{k}|\, <1\).
 
6
For conventional DNUSTM and DUSTM techniques, each data symbol is differentially encoded into two adjacently transmitted \(L_{t}\times L_{t}\) matrices and each transmitted matrix is emitted every \(L_{t}T_{s}\) seconds. Because \(L_{t}\) encoded symbols are transmitted at each antenna in each \( L_{t}T_{s}\) seconds, all the existing techniques operating at a rate of \(R\) bits per transmit antenna per \(L_{t}T_{s}\) provide a bandwidth efficiency of \(R\) bits\(/\)sec\(/\)channel use.
 
7
In the following, the initial transmitted symbol matrices used for all compared DNUSTM and DUSTM techniques are set to the identity matrix.
 
Literatur
1.
Zurück zum Zitat Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space-time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory, 44(2), 744–765.MATHMathSciNet Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space-time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory, 44(2), 744–765.MATHMathSciNet
2.
Zurück zum Zitat Hochwald, B. M., & Marzetta, T. L. (2000). Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading. IEEE Transactions on Information Theory, 46(2), 543–564.MATHMathSciNet Hochwald, B. M., & Marzetta, T. L. (2000). Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading. IEEE Transactions on Information Theory, 46(2), 543–564.MATHMathSciNet
3.
Zurück zum Zitat Hassibi, B., & Hochwald, B. M. (2002). High-rate codes that are linear in space and time. IEEE Transactions on Information Theory, 48(7), 1804–1824.MATHMathSciNet Hassibi, B., & Hochwald, B. M. (2002). High-rate codes that are linear in space and time. IEEE Transactions on Information Theory, 48(7), 1804–1824.MATHMathSciNet
4.
Zurück zum Zitat Yuen, C., Guan, Y. L., & Tjhung, T. T. (2008). Power-balanced orthogonal space-time block code. IEEE Transactions on Vehicular Technology, 57(5), 3304–3309. Yuen, C., Guan, Y. L., & Tjhung, T. T. (2008). Power-balanced orthogonal space-time block code. IEEE Transactions on Vehicular Technology, 57(5), 3304–3309.
5.
Zurück zum Zitat Das, S., & Rajan, B. S. (2009). Square complex orthogonal designs with low PAPR and signaling complexity. IEEE Transactions on Wireless Communications, 8(1), 204–213. Das, S., & Rajan, B. S. (2009). Square complex orthogonal designs with low PAPR and signaling complexity. IEEE Transactions on Wireless Communications, 8(1), 204–213.
6.
Zurück zum Zitat Zheng, L., & Tse, D. N. C. (2003). Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels. IEEE Transactions on Information Theory, 49(5), 1073–1096.MATH Zheng, L., & Tse, D. N. C. (2003). Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels. IEEE Transactions on Information Theory, 49(5), 1073–1096.MATH
7.
Zurück zum Zitat Belfiore, J.-C., Rekaya, G., & Viterbo, E. (2005). The Golden code: A 2x2 full-rate space-time code with nonvanishing determinants. IEEE Transactions on Information Theory, 51(4), 1432–1436.MATHMathSciNet Belfiore, J.-C., Rekaya, G., & Viterbo, E. (2005). The Golden code: A 2x2 full-rate space-time code with nonvanishing determinants. IEEE Transactions on Information Theory, 51(4), 1432–1436.MATHMathSciNet
8.
Zurück zum Zitat Sethuraman, B. A., Rajan, B. S., & Shashidhar, V. (2003). Full-diversity, high-rate space-time block codes from division algebras. IEEE Transactions on Information Theory, 49(10), 2596–2616.MathSciNet Sethuraman, B. A., Rajan, B. S., & Shashidhar, V. (2003). Full-diversity, high-rate space-time block codes from division algebras. IEEE Transactions on Information Theory, 49(10), 2596–2616.MathSciNet
9.
Zurück zum Zitat Hochwald, B. M., & Sweldens, W. (2000). Differential unitary space-time modulation. IEEE Transactions on Communications, 48(12), 2041–2052. Hochwald, B. M., & Sweldens, W. (2000). Differential unitary space-time modulation. IEEE Transactions on Communications, 48(12), 2041–2052.
10.
Zurück zum Zitat Brehler, M., & Varanasi, M. K. (2001). Asymptotic error probability analysis of quadratic receivers in Rayleigh-fading channels with applications to a unified analysis of coherent and noncoherent space-time receivers. IEEE Transactions on Information Theory, 47(6), 2383–2399.MATHMathSciNet Brehler, M., & Varanasi, M. K. (2001). Asymptotic error probability analysis of quadratic receivers in Rayleigh-fading channels with applications to a unified analysis of coherent and noncoherent space-time receivers. IEEE Transactions on Information Theory, 47(6), 2383–2399.MATHMathSciNet
11.
Zurück zum Zitat Hughes, B. L. (2000). Differential space-time modulation. IEEE Transactions on Information Theory, 46(7), 2567–2578.MATH Hughes, B. L. (2000). Differential space-time modulation. IEEE Transactions on Information Theory, 46(7), 2567–2578.MATH
12.
Zurück zum Zitat Schober, R., & Lampe, L. H. J. (2002). Differential modulation diversity. IEEE Transactions on Vehicular Technology, 51(6), 1431–1444. Schober, R., & Lampe, L. H. J. (2002). Differential modulation diversity. IEEE Transactions on Vehicular Technology, 51(6), 1431–1444.
13.
Zurück zum Zitat Tao, M. (2009). Effects of non-identical Rayleigh fading on differential unitary space-time modulation. IEEE Transactions on Communications, 57(5), 1359–1369. Tao, M. (2009). Effects of non-identical Rayleigh fading on differential unitary space-time modulation. IEEE Transactions on Communications, 57(5), 1359–1369.
14.
Zurück zum Zitat Tarokh, V., & Jafarkhani, H. (2000). A differential detection scheme for transmit diversity. IEEE Journal on Selected Areas in Communications, 18(7), 1169–1174. Tarokh, V., & Jafarkhani, H. (2000). A differential detection scheme for transmit diversity. IEEE Journal on Selected Areas in Communications, 18(7), 1169–1174.
15.
Zurück zum Zitat Ganesan, G., & Stoica, P. (2002). Differential modulation using space-time block codes. IEEE Signal Processing Letters, 9(2), 57–60. Ganesan, G., & Stoica, P. (2002). Differential modulation using space-time block codes. IEEE Signal Processing Letters, 9(2), 57–60.
16.
Zurück zum Zitat Song, A., Wang, G., Su, W., & Xia, X.-G. (2004). Unitary space-time codes from Alamouti’s scheme with APSK signals. IEEE Transactions on Wireless Communications, 3(6), 2374–2384. Song, A., Wang, G., Su, W., & Xia, X.-G. (2004). Unitary space-time codes from Alamouti’s scheme with APSK signals. IEEE Transactions on Wireless Communications, 3(6), 2374–2384.
17.
Zurück zum Zitat Bhatnagar, M. R., Hjørungnes, A., & Song, L. (2009). Differential coding for non-orthogonal space-time block codes with non-unitary constellations over arbitrarily correlated Rayleigh channels. IEEE Transactions on Wireless Communications, 8(8), 3985–3995. Bhatnagar, M. R., Hjørungnes, A., & Song, L. (2009). Differential coding for non-orthogonal space-time block codes with non-unitary constellations over arbitrarily correlated Rayleigh channels. IEEE Transactions on Wireless Communications, 8(8), 3985–3995.
18.
Zurück zum Zitat Yu, X., Xu, D., & Bi, G. (2006). Differential space-time coding scheme using star quadrature amplitude modulation method. EURASIP Journal on Advances in Signal Processing, 2006(2006), 1–12.MATH Yu, X., Xu, D., & Bi, G. (2006). Differential space-time coding scheme using star quadrature amplitude modulation method. EURASIP Journal on Advances in Signal Processing, 2006(2006), 1–12.MATH
19.
Zurück zum Zitat Bauch, G. (2008). Bandwidth-efficient differential space-time modulation. IEEE Transactions on Vehicular Technology, 57(5), 2792–2803. Bauch, G. (2008). Bandwidth-efficient differential space-time modulation. IEEE Transactions on Vehicular Technology, 57(5), 2792–2803.
20.
Zurück zum Zitat Ryu, H.-G., Park, J. S., & Park, J.-S. (2004). Threshold IBO of HPA in the predistorted OFDM communication system. IEEE Transactions on Broadcasting, 50(4), 425–428. Ryu, H.-G., Park, J. S., & Park, J.-S. (2004). Threshold IBO of HPA in the predistorted OFDM communication system. IEEE Transactions on Broadcasting, 50(4), 425–428.
21.
Zurück zum Zitat Costa, E., & Pupolin, S. (2002). M-QAM-OFDM system performance in the presence of a nonlinear amplifier and phase noise. IEEE Transactions on Communications, 50(3), 462–472. Costa, E., & Pupolin, S. (2002). M-QAM-OFDM system performance in the presence of a nonlinear amplifier and phase noise. IEEE Transactions on Communications, 50(3), 462–472.
22.
Zurück zum Zitat Beaulieu, N. C. (1990). An infinite series for the computation of the complementary probability distribution function of a sum of independent random variables and its application to the sum of Rayleigh random variables. IEEE Transactions on Communications, 38(9), 1463–1474. Beaulieu, N. C. (1990). An infinite series for the computation of the complementary probability distribution function of a sum of independent random variables and its application to the sum of Rayleigh random variables. IEEE Transactions on Communications, 38(9), 1463–1474.
23.
Zurück zum Zitat Chung, C.-D. (1997). Differentially amplitude and phase-encoded QAM for the correlated Rayleigh-fading channel with diversity reception. IEEE Transactions on Communications, 45(3), 309–321. Chung, C.-D. (1997). Differentially amplitude and phase-encoded QAM for the correlated Rayleigh-fading channel with diversity reception. IEEE Transactions on Communications, 45(3), 309–321.
24.
Zurück zum Zitat Huang, C.-H., & Chung, C.-D. (2012). Differentially amplitude- and phase-encoded QAM for amplify-and-forward multiple-relay systems. IEEE Transactions on Vehicular Technology, 61(5), 2054–2066. Huang, C.-H., & Chung, C.-D. (2012). Differentially amplitude- and phase-encoded QAM for amplify-and-forward multiple-relay systems. IEEE Transactions on Vehicular Technology, 61(5), 2054–2066.
25.
Zurück zum Zitat Ma, Y., Zhang, Q. T., Schober, R., & Pasupathy, S. (2005). Diversity reception of DAPSK over generalized fading channels. IEEE Transactions on Wireless Communications, 4(4), 1834–1846. Ma, Y., Zhang, Q. T., Schober, R., & Pasupathy, S. (2005). Diversity reception of DAPSK over generalized fading channels. IEEE Transactions on Wireless Communications, 4(4), 1834–1846.
26.
Zurück zum Zitat Tjhung, T. T., Dong, X., Adachi, F., & Tan, K. H. (1997). On diversity reception of narrowband 16 star-QAM in fast Rician fading. IEEE Transactions on Vehicular Technology, 46(4), 923–932. Tjhung, T. T., Dong, X., Adachi, F., & Tan, K. H. (1997). On diversity reception of narrowband 16 star-QAM in fast Rician fading. IEEE Transactions on Vehicular Technology, 46(4), 923–932.
27.
Zurück zum Zitat Proakis, J. G., & Salehi, M. (2008). Digital communications (5th ed.). New York: McGraw-Hill. Proakis, J. G., & Salehi, M. (2008). Digital communications (5th ed.). New York: McGraw-Hill.
28.
Zurück zum Zitat Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series, and products (6th ed.). San Diego, CA: Academic Press.MATH Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series, and products (6th ed.). San Diego, CA: Academic Press.MATH
29.
Zurück zum Zitat Larson, H. J., & Shubert, B. O. (1979). Probabilistic models in engineering sciences. New York: Wiley. Larson, H. J., & Shubert, B. O. (1979). Probabilistic models in engineering sciences. New York: Wiley.
30.
Zurück zum Zitat Rappaport, T. S. (1996). Wireless communications: Principles and practice. Englewood Cliffs, NJ: Prentice Hall. Rappaport, T. S. (1996). Wireless communications: Principles and practice. Englewood Cliffs, NJ: Prentice Hall.
Metadaten
Titel
Differential Space-Time Modulation Using DAPSK Over Rician Fading Channels
verfasst von
Chi-Hua Huang
Char-Dir Chung
Publikationsdatum
01.09.2014
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2014
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-014-1799-7

Weitere Artikel der Ausgabe 2/2014

Wireless Personal Communications 2/2014 Zur Ausgabe

Neuer Inhalt