Skip to main content

2023 | OriginalPaper | Buchkapitel

Differentially Private Bayesian Neural Networks on Accuracy, Privacy and Reliability

verfasst von : Qiyiwen Zhang, Zhiqi Bu, Kan Chen, Qi Long

Erschienen in: Machine Learning and Knowledge Discovery in Databases

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bayesian neural network (BNN) allows for uncertainty quantification in prediction, offering an advantage over regular neural networks that has not been explored in the differential privacy (DP) framework. We fill this important gap by leveraging recent development in Bayesian deep learning and privacy accounting to offer a more precise analysis of the trade-off between privacy and accuracy in BNN. We propose three DP-BNNs that characterize the weight uncertainty for the same network architecture in distinct ways, namely DP-SGLD (via the noisy gradient method), DP-BBP (via changing the parameters of interest) and DP-MC Dropout (via the model architecture). Interestingly, we show a new equivalence between DP-SGD and DP-SGLD, implying that some non-Bayesian DP training naturally allows for uncertainty quantification. However, the hyperparameters such as learning rate and batch size, can have different or even opposite effects in DP-SGD and DP-SGLD.
Extensive experiments are conducted to compare DP-BNNs, in terms of privacy guarantee, prediction accuracy, uncertainty quantification, calibration, computation speed, and generalizability to network architecture. As a result, we observe a new tradeoff between the privacy and the reliability. When compared to non-DP and non-Bayesian approaches, DP-SGLD is remarkably accurate under strong privacy guarantee, demonstrating the great potential of DP-BNN in real-world tasks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
For example, if the prior is \(\mathcal {N}(0,\sigma ^2)\), then \(-\log p(\theta )\propto \frac{\Vert \theta \Vert ^2}{2\sigma ^2}\) is the \(L_2\) penalty; if the prior is Laplacian, then \(-\log p(\theta )\) is the \(L_1\) penalty; additionally, the likelihood of a Gaussian model corresponds to the mean squared error loss..
 
2
Since DP-BBP does not optimize the weights, the back-propagation is much different from using \(\frac{\partial \ell }{\partial \boldsymbol{w}}\) (see Appendix B) and thus requires new design that is currently not available. See https://​github.​com/​pytorch/​opacus/​blob/​master/​opacus/​supported_​layers_​grad_​samplers.​py.
 
3
Within each cluster, the bins can interchange the ordering. Thus the bin’s x-coordinate is not meaningful and only the cluster’s x-coordinate represents the prediction probability.
 
Literatur
1.
Zurück zum Zitat Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K., Zhang, L.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. pp. 308–318 (2016) Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K., Zhang, L.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. pp. 308–318 (2016)
2.
Zurück zum Zitat Asoodeh, S., Liao, J., Calmon, F.P., Kosut, O., Sankar, L.: A better bound gives a hundred rounds: Enhanced privacy guarantees via f-divergences. In: 2020 IEEE International Symposium on Information Theory (ISIT). pp. 920–925. IEEE (2020) Asoodeh, S., Liao, J., Calmon, F.P., Kosut, O., Sankar, L.: A better bound gives a hundred rounds: Enhanced privacy guarantees via f-divergences. In: 2020 IEEE International Symposium on Information Theory (ISIT). pp. 920–925. IEEE (2020)
3.
Zurück zum Zitat Balle, B., Barthe, G., Gaboardi, M.: Privacy amplification by subsampling: Tight analyses via couplings and divergences. arXiv preprint arXiv:1807.01647 (2018) Balle, B., Barthe, G., Gaboardi, M.: Privacy amplification by subsampling: Tight analyses via couplings and divergences. arXiv preprint arXiv:​1807.​01647 (2018)
4.
Zurück zum Zitat Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural network. In: International Conference on Machine Learning. pp. 1613–1622. PMLR (2015) Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural network. In: International Conference on Machine Learning. pp. 1613–1622. PMLR (2015)
5.
Zurück zum Zitat Bu, Z., Dong, J., Long, Q., Su, W.J.: Deep learning with gaussian differential privacy. Harvard data science review 2020(23) (2020) Bu, Z., Dong, J., Long, Q., Su, W.J.: Deep learning with gaussian differential privacy. Harvard data science review 2020(23) (2020)
6.
Zurück zum Zitat Bu, Z., Gopi, S., Kulkarni, J., Lee, Y.T., Shen, J.H., Tantipongpipat, U.: Fast and memory efficient differentially private-sgd via jl projections. arXiv preprint arXiv:2102.03013 (2021) Bu, Z., Gopi, S., Kulkarni, J., Lee, Y.T., Shen, J.H., Tantipongpipat, U.: Fast and memory efficient differentially private-sgd via jl projections. arXiv preprint arXiv:​2102.​03013 (2021)
7.
Zurück zum Zitat Buntine, W.L.: Bayesian backpropagation. Complex systems 5, 603–643 (1991)MATH Buntine, W.L.: Bayesian backpropagation. Complex systems 5, 603–643 (1991)MATH
8.
Zurück zum Zitat Cadwalladr, C., Graham-Harrison, E.: Revealed: 50 million facebook profiles harvested for cambridge analytica in major data breach. The guardian 17, 22 (2018) Cadwalladr, C., Graham-Harrison, E.: Revealed: 50 million facebook profiles harvested for cambridge analytica in major data breach. The guardian 17, 22 (2018)
9.
11.
Zurück zum Zitat Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Theory of cryptography conference. pp. 265–284. Springer (2006) Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Theory of cryptography conference. pp. 265–284. Springer (2006)
12.
Zurück zum Zitat Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy. Foundations and Trends in Theoretical Computer Science 9(3–4), 211–407 (2014)MathSciNetMATH Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy. Foundations and Trends in Theoretical Computer Science 9(3–4), 211–407 (2014)MathSciNetMATH
13.
Zurück zum Zitat Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In: international conference on machine learning. pp. 1050–1059. PMLR (2016) Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In: international conference on machine learning. pp. 1050–1059. PMLR (2016)
15.
Zurück zum Zitat Graves, A.: Practical variational inference for neural networks. Advances in neural information processing systems 24 (2011) Graves, A.: Practical variational inference for neural networks. Advances in neural information processing systems 24 (2011)
16.
Zurück zum Zitat Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: International Conference on Machine Learning. pp. 1321–1330. PMLR (2017) Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: International Conference on Machine Learning. pp. 1321–1330. PMLR (2017)
17.
Zurück zum Zitat Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What can we learn privately? SIAM Journal on Computing 40(3), 793–826 (2011)MathSciNetCrossRefMATH Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What can we learn privately? SIAM Journal on Computing 40(3), 793–826 (2011)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Koskela, A., Jälkö, J., Honkela, A.: Computing tight differential privacy guarantees using fft. In: International Conference on Artificial Intelligence and Statistics. pp. 2560–2569. PMLR (2020) Koskela, A., Jälkö, J., Honkela, A.: Computing tight differential privacy guarantees using fft. In: International Conference on Artificial Intelligence and Statistics. pp. 2560–2569. PMLR (2020)
19.
Zurück zum Zitat Kuleshov, V., Fenner, N., Ermon, S.: Accurate uncertainties for deep learning using calibrated regression. In: International Conference on Machine Learning. pp. 2796–2804. PMLR (2018) Kuleshov, V., Fenner, N., Ermon, S.: Accurate uncertainties for deep learning using calibrated regression. In: International Conference on Machine Learning. pp. 2796–2804. PMLR (2018)
20.
Zurück zum Zitat Li, B., Chen, C., Liu, H., Carin, L.: On connecting stochastic gradient mcmc and differential privacy. In: The 22nd International Conference on Artificial Intelligence and Statistics. pp. 557–566. PMLR (2019) Li, B., Chen, C., Liu, H., Carin, L.: On connecting stochastic gradient mcmc and differential privacy. In: The 22nd International Conference on Artificial Intelligence and Statistics. pp. 557–566. PMLR (2019)
21.
Zurück zum Zitat Li, C., Chen, C., Carlson, D., Carin, L.: Preconditioned stochastic gradient langevin dynamics for deep neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 30 (2016) Li, C., Chen, C., Carlson, D., Carin, L.: Preconditioned stochastic gradient langevin dynamics for deep neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 30 (2016)
22.
Zurück zum Zitat MacKay, D.J.: A practical bayesian framework for backpropagation networks. Neural computation 4(3), 448–472 (1992)CrossRef MacKay, D.J.: A practical bayesian framework for backpropagation networks. Neural computation 4(3), 448–472 (1992)CrossRef
23.
Zurück zum Zitat MacKay, D.J.: Probable networks and plausible predictions-a review of practical bayesian methods for supervised neural networks. Network: computation in neural systems 6(3), 469–505 (1995) MacKay, D.J.: Probable networks and plausible predictions-a review of practical bayesian methods for supervised neural networks. Network: computation in neural systems 6(3), 469–505 (1995)
24.
Zurück zum Zitat Maroñas, J., Paredes, R., Ramos, D.: Calibration of deep probabilistic models with decoupled bayesian neural networks. Neurocomputing 407, 194–205 (2020)CrossRef Maroñas, J., Paredes, R., Ramos, D.: Calibration of deep probabilistic models with decoupled bayesian neural networks. Neurocomputing 407, 194–205 (2020)CrossRef
25.
Zurück zum Zitat Minderer, M., Djolonga, J., Romijnders, R., Hubis, F., Zhai, X., Houlsby, N., Tran, D., Lucic, M.: Revisiting the calibration of modern neural networks. arXiv preprint arXiv:2106.07998 (2021) Minderer, M., Djolonga, J., Romijnders, R., Hubis, F., Zhai, X., Houlsby, N., Tran, D., Lucic, M.: Revisiting the calibration of modern neural networks. arXiv preprint arXiv:​2106.​07998 (2021)
26.
Zurück zum Zitat Mironov, I., Talwar, K., Zhang, L.: R\(\backslash \)’enyi differential privacy of the sampled gaussian mechanism. arXiv preprint arXiv:1908.10530 (2019) Mironov, I., Talwar, K., Zhang, L.: R\(\backslash \)’enyi differential privacy of the sampled gaussian mechanism. arXiv preprint arXiv:​1908.​10530 (2019)
27.
Zurück zum Zitat Neal, R.M.: Bayesian learning for neural networks, vol. 118. Springer Science & Business Media (2012) Neal, R.M.: Bayesian learning for neural networks, vol. 118. Springer Science & Business Media (2012)
28.
Zurück zum Zitat Niculescu-Mizil, A., Caruana, R.: Predicting good probabilities with supervised learning. In: Proceedings of the 22nd international conference on Machine learning. pp. 625–632 (2005) Niculescu-Mizil, A., Caruana, R.: Predicting good probabilities with supervised learning. In: Proceedings of the 22nd international conference on Machine learning. pp. 625–632 (2005)
29.
Zurück zum Zitat Rochette, G., Manoel, A., Tramel, E.W.: Efficient per-example gradient computations in convolutional neural networks. arXiv preprint arXiv:1912.06015 (2019) Rochette, G., Manoel, A., Tramel, E.W.: Efficient per-example gradient computations in convolutional neural networks. arXiv preprint arXiv:​1912.​06015 (2019)
30.
Zurück zum Zitat Ryffel, T., Trask, A., Dahl, M., Wagner, B., Mancuso, J., Rueckert, D., Passerat-Palmbach, J.: A generic framework for privacy preserving deep learning. arXiv preprint arXiv:1811.04017 (2018) Ryffel, T., Trask, A., Dahl, M., Wagner, B., Mancuso, J., Rueckert, D., Passerat-Palmbach, J.: A generic framework for privacy preserving deep learning. arXiv preprint arXiv:​1811.​04017 (2018)
31.
Zurück zum Zitat Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research 15(1), 1929–1958 (2014)MathSciNetMATH Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research 15(1), 1929–1958 (2014)MathSciNetMATH
32.
Zurück zum Zitat Wang, Y.X.: Revisiting differentially private linear regression: optimal and adaptive prediction & estimation in unbounded domain. arXiv preprint arXiv:1803.02596 (2018) Wang, Y.X.: Revisiting differentially private linear regression: optimal and adaptive prediction & estimation in unbounded domain. arXiv preprint arXiv:​1803.​02596 (2018)
33.
Zurück zum Zitat Wang, Y.X., Balle, B., Kasiviswanathan, S.P.: Subsampled rényi differential privacy and analytical moments accountant. In: The 22nd International Conference on Artificial Intelligence and Statistics. pp. 1226–1235. PMLR (2019) Wang, Y.X., Balle, B., Kasiviswanathan, S.P.: Subsampled rényi differential privacy and analytical moments accountant. In: The 22nd International Conference on Artificial Intelligence and Statistics. pp. 1226–1235. PMLR (2019)
34.
Zurück zum Zitat Wang, Y.X., Fienberg, S., Smola, A.: Privacy for free: Posterior sampling and stochastic gradient monte carlo. In: International Conference on Machine Learning. pp. 2493–2502. PMLR (2015) Wang, Y.X., Fienberg, S., Smola, A.: Privacy for free: Posterior sampling and stochastic gradient monte carlo. In: International Conference on Machine Learning. pp. 2493–2502. PMLR (2015)
35.
Zurück zum Zitat Welling, M., Teh, Y.W.: Bayesian learning via stochastic gradient langevin dynamics. In: Proceedings of the 28th international conference on machine learning (ICML-11). pp. 681–688. Citeseer (2011) Welling, M., Teh, Y.W.: Bayesian learning via stochastic gradient langevin dynamics. In: Proceedings of the 28th international conference on machine learning (ICML-11). pp. 681–688. Citeseer (2011)
36.
Zurück zum Zitat Xiong, H.Y., Barash, Y., Frey, B.J.: Bayesian prediction of tissue-regulated splicing using rna sequence and cellular context. Bioinformatics 27(18), 2554–2562 (2011)CrossRef Xiong, H.Y., Barash, Y., Frey, B.J.: Bayesian prediction of tissue-regulated splicing using rna sequence and cellular context. Bioinformatics 27(18), 2554–2562 (2011)CrossRef
37.
Zurück zum Zitat Zeiler, M.D., Fergus, R.: Stochastic pooling for regularization of deep convolutional neural networks. arXiv preprint arXiv:1301.3557 (2013) Zeiler, M.D., Fergus, R.: Stochastic pooling for regularization of deep convolutional neural networks. arXiv preprint arXiv:​1301.​3557 (2013)
38.
Zurück zum Zitat Zhang, Z., Rubinstein, B., Dimitrakakis, C.: On the differential privacy of bayesian inference. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 30 (2016) Zhang, Z., Rubinstein, B., Dimitrakakis, C.: On the differential privacy of bayesian inference. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 30 (2016)
Metadaten
Titel
Differentially Private Bayesian Neural Networks on Accuracy, Privacy and Reliability
verfasst von
Qiyiwen Zhang
Zhiqi Bu
Kan Chen
Qi Long
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-26412-2_37

Premium Partner