Skip to main content
Erschienen in: Cellulose 2/2012

01.04.2012

Diffraction from nonperiodic models of cellulose crystals

verfasst von: Yoshiharu Nishiyama, Glenn P. Johnson, Alfred D. French

Erschienen in: Cellulose | Ausgabe 2/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Powder and fiber diffraction patterns were calculated for model cellulose crystallites with chains 20 glucose units long. Model sizes ranged from four chains to 169 chains, based on cellulose Iβ coordinates. They were subjected to various combinations of energy minimization and molecular dynamics (MD) in water. Disorder induced by MD and one or two layers of water had small effects on the relative intensities, except that together they reduced the low-angle scattering that was otherwise severe enough to shift the 1 \( \bar {1} \) 0 peak. Other shifts in the calculated peaks occurred because the empirical force field used for MD and minimization caused the models to have small discrepancies with the experimental intermolecular distances. Twisting and other disorder induced by minimization or MD increased the breadth of peaks by about 0.2–0.3° 2-θ. Patterns were compared with experimental results. In particular, the calculated fiber patterns revealed a potential for a larger number of experimental diffraction spots to be found for cellulose from some higher plants when crystallites are well-oriented. Either that, or further understanding of those structures is needed. One major use for patterns calculated from models is testing of various proposals for microfibril organization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Fußnoten
1
In a crystal composed of a 10 × 10 array of polymeric molecules, 36 would be on the surface (36%). In a conventional, sub-millimeter size single-crystal for diffraction, the fraction of molecules on the surface is much less than one percent.
 
2
The range of the calculated diffraction was selected after consideration of the number of atoms in the model and the number of pixels for which the intensity must be calculated. These factors determine the computer time required for the calculation. Some of the software used for projects other than reported in this paper was limited in the sizes of data arrays that could be handled. Considering that some models were as large as 94,700 atoms and 18 different size crystals were modeled, each with 14 variations of water content, energy minimization and molecular dynamics, the selected step sizes of 0.003 S out to 0.597 S were considered adequate for the present purposes. Larger calculated patterns are definitely possible.
 
Literatur
Zurück zum Zitat Alexander LE (1969) X-ray diffraction methods in polymer science. Wiley-Interscience, New York, p. 44 and Appendix 1, T-14 Alexander LE (1969) X-ray diffraction methods in polymer science. Wiley-Interscience, New York, p. 44 and Appendix 1, T-14
Zurück zum Zitat Azároff LV, Buerger MJ (1958) The powder method in X-ray crystallography. McGraw-Hill, New York, p 254 Azároff LV, Buerger MJ (1958) The powder method in X-ray crystallography. McGraw-Hill, New York, p 254
Zurück zum Zitat Baker AA, Helbert W, Sugiyama J, Miles MJ (2000) New insight into cellulose structure by atomic force microscopy shows the Iα crystal phase at near-atomic resolution. Biophys J 79:1139–1145CrossRef Baker AA, Helbert W, Sugiyama J, Miles MJ (2000) New insight into cellulose structure by atomic force microscopy shows the Iα crystal phase at near-atomic resolution. Biophys J 79:1139–1145CrossRef
Zurück zum Zitat Basma M, Sundara S, Calgan D, Vernali T, Woods RJ (2001) Solvated ensemble averaging in the calculation of partial atomic charges. J Comput Chem 22:1125–1137CrossRef Basma M, Sundara S, Calgan D, Vernali T, Woods RJ (2001) Solvated ensemble averaging in the calculation of partial atomic charges. J Comput Chem 22:1125–1137CrossRef
Zurück zum Zitat Bellesia G, Asztalos A, Shen T, Langan P, Redondo A, Gnanakaran S (2010) In silico studies of crystalline cellulose and its degradation by enzymes. Acta Crystallogr D Biol Crystallogr 66:1184–1188CrossRef Bellesia G, Asztalos A, Shen T, Langan P, Redondo A, Gnanakaran S (2010) In silico studies of crystalline cellulose and its degradation by enzymes. Acta Crystallogr D Biol Crystallogr 66:1184–1188CrossRef
Zurück zum Zitat Bergenstråhle M, Berglund LA, Mazeau K (2007) Thermal response in crystalline Iβ cellulose: a molecular dynamics study. J Phys Chem B 111:9138–9145CrossRef Bergenstråhle M, Berglund LA, Mazeau K (2007) Thermal response in crystalline Iβ cellulose: a molecular dynamics study. J Phys Chem B 111:9138–9145CrossRef
Zurück zum Zitat Ding S-Y, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54:597–606CrossRef Ding S-Y, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54:597–606CrossRef
Zurück zum Zitat Driemeier C, Calligaris GA (2011) Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials. J Appl Cryst 44:184–192CrossRef Driemeier C, Calligaris GA (2011) Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials. J Appl Cryst 44:184–192CrossRef
Zurück zum Zitat Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65CrossRef Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65CrossRef
Zurück zum Zitat Fernandes AN, Thomas LH, Altaner CM, Callow P, Fosyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci USA 108:E1195–E1203CrossRef Fernandes AN, Thomas LH, Altaner CM, Callow P, Fosyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci USA 108:E1195–E1203CrossRef
Zurück zum Zitat Ford ZM, Stevens ED, Johnson GP, French AD (2005) Determining the crystal structure of cellulose IIII by modeling. Carbohydr Res 340:827–833CrossRef Ford ZM, Stevens ED, Johnson GP, French AD (2005) Determining the crystal structure of cellulose IIII by modeling. Carbohydr Res 340:827–833CrossRef
Zurück zum Zitat Hardy BJ, Sarko A (1996) Molecular dynamics simulations and diffraction-based analysis of the native cellulose fibre: structural modelling of the I-α and I-β phases and their interconversion. Polymer 37:1833–1839CrossRef Hardy BJ, Sarko A (1996) Molecular dynamics simulations and diffraction-based analysis of the native cellulose fibre: structural modelling of the I-α and I-β phases and their interconversion. Polymer 37:1833–1839CrossRef
Zurück zum Zitat Heiner AP, Sugiyama J, Teleman O (1995) Crystalline cellulose Iα and Iβ studied by molecular dynamics simulation. Carbohyr Res 273:207–223CrossRef Heiner AP, Sugiyama J, Teleman O (1995) Crystalline cellulose Iα and Iβ studied by molecular dynamics simulation. Carbohyr Res 273:207–223CrossRef
Zurück zum Zitat Hosemann R (1962) Crystallinity in high polymers, especially fibres. Polymer 3:349–392CrossRef Hosemann R (1962) Crystallinity in high polymers, especially fibres. Polymer 3:349–392CrossRef
Zurück zum Zitat Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRef Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRef
Zurück zum Zitat Kirschner KN, Woods RJ (2001a) Solvent interactions determine carbohydrate conformations. Proc Natl Acad Sci USA 98:10541–10545CrossRef Kirschner KN, Woods RJ (2001a) Solvent interactions determine carbohydrate conformations. Proc Natl Acad Sci USA 98:10541–10545CrossRef
Zurück zum Zitat Kirschner KN, Woods RJ (2001b) Quantum mechanical study of the nonbonded forces in water-methanol complexes. J Phys Chem A 105:4150–4155CrossRef Kirschner KN, Woods RJ (2001b) Quantum mechanical study of the nonbonded forces in water-methanol complexes. J Phys Chem A 105:4150–4155CrossRef
Zurück zum Zitat Kirschner KN, Yongye AB, Tschampel SM, González-Outeiriño J, Daniels CR, Foley BL, Woods RJ (2008) GLYCAM06: a generalizable biomolecular force field, carbohydrates. J Comput Chem 29:622–655CrossRef Kirschner KN, Yongye AB, Tschampel SM, González-Outeiriño J, Daniels CR, Foley BL, Woods RJ (2008) GLYCAM06: a generalizable biomolecular force field, carbohydrates. J Comput Chem 29:622–655CrossRef
Zurück zum Zitat Kroon-Batenburg LMJ, Kroon J (1997) The crystal and molecular structures of cellulose I and II. Glycoconj J 14:677–690CrossRef Kroon-Batenburg LMJ, Kroon J (1997) The crystal and molecular structures of cellulose I and II. Glycoconj J 14:677–690CrossRef
Zurück zum Zitat Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Ångstrom resolution. Biomacromolecules 2:410–416CrossRef Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Ångstrom resolution. Biomacromolecules 2:410–416CrossRef
Zurück zum Zitat Macrae CF, Gruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470CrossRef Macrae CF, Gruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470CrossRef
Zurück zum Zitat Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 341:138–152CrossRef Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 341:138–152CrossRef
Zurück zum Zitat Mazeau K, Heux L (2003) Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J Phys Chem B 107:2394–2403CrossRef Mazeau K, Heux L (2003) Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J Phys Chem B 107:2394–2403CrossRef
Zurück zum Zitat Newman RH (1998) Evidence for assignment of 13C NMR signals to cellulose crystallite surfaces in wood, pulp and isolated celluloses. Holzforschung 52:157–159CrossRef Newman RH (1998) Evidence for assignment of 13C NMR signals to cellulose crystallite surfaces in wood, pulp and isolated celluloses. Holzforschung 52:157–159CrossRef
Zurück zum Zitat Newman RH (2008) Simulation of X-ray diffractograms relevant to the purported polymorphs cellulose IVI and IVII. Cellulose 15:769–778CrossRef Newman RH (2008) Simulation of X-ray diffractograms relevant to the purported polymorphs cellulose IVI and IVII. Cellulose 15:769–778CrossRef
Zurück zum Zitat Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249CrossRef Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249CrossRef
Zurück zum Zitat Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRef Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRef
Zurück zum Zitat Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003a) Crystal structure and hydrogen bonding system in cellulose Iα, from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306CrossRef Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003a) Crystal structure and hydrogen bonding system in cellulose Iα, from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306CrossRef
Zurück zum Zitat Nishiyama Y, Kim UJ, Kim DY, Katsumata KS, May RP, Langan P (2003b) Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4:1013–1017CrossRef Nishiyama Y, Kim UJ, Kim DY, Katsumata KS, May RP, Langan P (2003b) Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4:1013–1017CrossRef
Zurück zum Zitat Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ. Biomacromolecules 9:3133–3140CrossRef Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ. Biomacromolecules 9:3133–3140CrossRef
Zurück zum Zitat Nishiyama Y, Noishiki Y, Wada M (2011) X-ray structure of anhydrous β-chitin at 1 Å resolution. Macromolecules 44:950–957CrossRef Nishiyama Y, Noishiki Y, Wada M (2011) X-ray structure of anhydrous β-chitin at 1 Å resolution. Macromolecules 44:950–957CrossRef
Zurück zum Zitat Patterson A (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982CrossRef Patterson A (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982CrossRef
Zurück zum Zitat Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612CrossRef Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612CrossRef
Zurück zum Zitat Rowland SP, Roberts EJ, Bose JL (1971) Availability and state of order of hydroxyl groups on the surfaces of microstructural units of crystalline cotton cellulose. J Polym Sci A-1 9:1431–1440 Rowland SP, Roberts EJ, Bose JL (1971) Availability and state of order of hydroxyl groups on the surfaces of microstructural units of crystalline cotton cellulose. J Polym Sci A-1 9:1431–1440
Zurück zum Zitat Wada M, Okano T, Sugiyama J (1997) Synchrotron-radiated X-ray and neutron diffraction study of native cellulose. Cellulose 4:221–232CrossRef Wada M, Okano T, Sugiyama J (1997) Synchrotron-radiated X-ray and neutron diffraction study of native cellulose. Cellulose 4:221–232CrossRef
Zurück zum Zitat Wada M, Chanzy H, Nishiyama Y, Langan P (2004) Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 37:8548–8555CrossRef Wada M, Chanzy H, Nishiyama Y, Langan P (2004) Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 37:8548–8555CrossRef
Zurück zum Zitat Wada M, Heux L, Nishiyama Y, Langan P (2009) X-ray crystallographic, scanning microprobe X-ray diffraction, and cross-polarized/magic angle spinning 13C NMR studies of the structure of cellulose IIIII. Biomacromolecules 10:302–309CrossRef Wada M, Heux L, Nishiyama Y, Langan P (2009) X-ray crystallographic, scanning microprobe X-ray diffraction, and cross-polarized/magic angle spinning 13C NMR studies of the structure of cellulose IIIII. Biomacromolecules 10:302–309CrossRef
Zurück zum Zitat Yui T, Okayama N, Hayashi S (2010) Structure conversions of cellulose IIII crystal models in solution state: a molecular dynamics study. Cellulose 17:679–691CrossRef Yui T, Okayama N, Hayashi S (2010) Structure conversions of cellulose IIII crystal models in solution state: a molecular dynamics study. Cellulose 17:679–691CrossRef
Metadaten
Titel
Diffraction from nonperiodic models of cellulose crystals
verfasst von
Yoshiharu Nishiyama
Glenn P. Johnson
Alfred D. French
Publikationsdatum
01.04.2012
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 2/2012
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-012-9652-1

Weitere Artikel der Ausgabe 2/2012

Cellulose 2/2012 Zur Ausgabe