Skip to main content
Erschienen in: Production Engineering 2/2023

Open Access 16.03.2023 | Production Management

Digital-based production: introduction and fields of application

verfasst von: J. Metternich, A. Kreß

Erschienen in: Production Engineering | Ausgabe 2/2023

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This special issue on “digital-based production” gives an overview about the current research on the integration of digital technologies into production processes and their fields of application. It covers topics from Industry 4.0, artificial intelligence and data analytics to the Industrial Internet of Things and Cyber-Physical Production Systems. This issue offers valuable insights for those interested in improving production efficiency, quality, and sustainability through digital technologies. In this foreword, we describe promising application fields of digital-based production and classify the submitted articles accordingly.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

Digital-based production is an integrated approach that uses digital technologies to monitor, analyse, simulate, and improve production processes, machines, equipment, and complete systems. In recent years smart sensors, new communication standards, cyber-physical systems, the Industrial Internet of Things (IIoT) and Artificial Intelligence (AI) are starting to pervade manufacturing systems [1]. The increased use of these technologies in manufacturing processes has led to a greater availability of data. At the same time, the cost of computing power, storage, and hardware is decreasing. In combination with an improved access to almost ready to use Machine Learning (ML) algorithms, this opens up new and promising fields of application for the manufacturing industry.

2 Application fields in digital-based production

The various use cases in relation to digital-based production can be classified into four application fields, according to [1]: condition monitoring and predictive maintenance, quality management, process monitoring and optimization and energy monitoring and flexibility.
Condition monitoring is the continuous monitoring of a machine or system's performance and condition, with the aim of detecting any potential problems or issues. The collected data is analysed to identify trends or deviations from normal behaviour and to support root cause problem solving [2]. Predictive maintenance techniques anticipate equipment failures, the prediction of the remaining useful lifetime (RUL) and allow the recommendation of appropriate measures to improve equipment uptime. In particular, the prediction of the RUL of machines and components can – if accurately assessed – provide valuable information for maintenance planning and decision-making [3]. An example for a direct approach on tool condition monitoring and lifetime assessment, give Jourdan et al. (2021) who have developed a system that can measure the degree of wear of a saw blade during operation [4]. For this purpose, a high-resolution camera takes images of the saw blade, which will subsequently be analysed by computer vision and an ML algorithm to detect the edge of the saw blade and the tips of the saw teeth. The degree of wear is then determined by the difference in length of the non-worn saw tooth to the measured actual condition.
In the context of quality management, predictive quality is expected to enhance classical quality assurance which is essentially based on measuring parts today. Predictive quality allows the determination of quality characteristics of a part or a product based on process and machine data without a dedicated measuring operation on the part itself. Furthermore, the detection of abnormalities based on process data allows real-time correction by modifying process or control parameters [5]. However, obstacles such as costs and adequate data acquisition pose challenges. In another example, drilling holes are classified by analysing process data using a random forest classifier [6]: While it is not possible to distinguish between the classes OK and NOK with conventional analysis, the ML approach allows this classification.
Process monitoring refers to the use of various tools and techniques to continuously monitor the behaviour and performance of a process plant or system, with the goal of detecting and diagnosing abnormal events or faults in real-time [7]. Consequently, the aim of process optimization is to improve the overall efficiency and productivity of the process by identifying and eliminating waste, minimizing downtime, and optimizing resource utilization. The application field process monitoring and optimization can be classified into the categories process, production planning and scheduling and value stream [1]. To improve productivity, quality, and efficiency, comparing collected data to optimized Key Performance Indicators (KPIs) is recommended. Intelligent machining parameter optimization is used to minimize machining time, improve productivity, and ensure product and tool quality, using sensor technology, high-frequency image data, and Computer-Aided Manufacturing (CAM) for in-process monitoring and control. Data-driven simulation-based optimization provides real-time decision-making based on the current system state but requires a well-structured data exchange framework. Via web-based applications, process data and analyses can be accessed from anywhere without having to pass through the automation pyramid. Digital twins represent a replica of physical assets in the real factory and allow its simulation, control, and improvement. In contrast, a digital shadow is a reflection of the relevant data in a factory. Intelligent algorithms such as genetic algorithms can optimise various manufacturing problems, and data process mining can analyse complex value streams that include product variety and dynamic changes in production. For instance, Ziegenbein (2022) discusses the potential of integrating ML methods into industrial production processes to achieve predictive quality, a better understanding of processes, development of knowledge, and savings through process optimization [8]. Further use cases were implemented in the process learning factory “Center for Industrial Productivity” [9], such as a digital twin of a value stream, through which relevant data in a database is used with a backflow of information for decision-making [10].
Sustainability in general refers to the ability to meet the needs of the present generation without compromising the ability of future generations to meet their own needs [11]. In the context of manufacturing, sustainability also includes improving resource efficiency, reducing energy consumption, increasing the use of renewable energy, and promoting the circular economy by designing products and processes that reduce waste and extend product lifecycles. According to the International Organization for Standardization (ISO), energy efficiency as a part of sustainability in manufacturing is “the relationship between the energy inputs and the outputs in the manufacturing process, including energy losses” [12]. Digitalization and data analysis have the potential to improve energy efficiency and sustainability in industry. For instance, the ETA learning factory at PTW focuses on increasing transparency and optimizing energy systems through data-driven methods [13]. Energy metering points can be used to collect data to feed into an energy prediction model that has been developed by Sossenheimer et al. (2020) and is used to forecast energy demand [14], avoid load peaks and align energy demand with energy supply: Advanced signal processing and ML techniques, such as short-term load forecasting, enable efficient energy purchasing and cost reduction [15]. Energy-adaptive production planning and optimized supply system control can result in significant energy savings with the use of optimization techniques like genetic algorithms or deep reinforcement learning [16].
In Fig. 1, the application fields are summarized based in the categories use-case, data and information, digitalization of physical quantities, integration and communication, signal processing and analysis [1, 17].
The application fields illustrate current fields of research and practical application in the field of digital-based production. However, pure technical progress does not usually lead to the spread of new technologies. Corresponding business models are also required, especially for ML applications [18]. Dimensions like value proposition, value creation, revenue mechanism, and customer benefit need to be addressed systematically to successfully anchor a business model [19]. Data-based business models may involve value creation through ML algorithms that can analyse data from various sources, such as sensors, equipment, and production lines, to identify patterns and make predictions. The revenue mechanism in this scenario could involve selling the ML solutions to other manufacturers, final customers or using them internally to improve operational efficiency and increase profitability. Finally, the customer dimension addresses the needs and preferences of different stakeholders within the manufacturing organization, such as plant managers, production engineers, and the aspects of acceptance and usability.

3 Classification of articles based on the application fields

In the following, the articles of this special issue are classified according to the application fields shown. For this purpose, the articles were categorized:
  • In the field of condition monitoring and predictive maintenance, the articles cover the topics optimization and prediction in tool management, the evaluation of data quality using machine learning algorithms and the prediction of missing KPIs.
  • In the field of quality management, defects to hybrid glass fiber components are evaluated, quality for milling processes is predicted and workshop operation status for quality control in discrete manufacturing is evaluated.
  • In the field of process monitoring and optimization, product and process configurations are considered using data analytics, varying time series representation learning techniques and their performance evaluation in clocked manufacturing are studied and industrial cast aluminium alloys processes are analysed using machine learning.
  • In the field of energy efficiency and flexibility, a data-based methodology for evaluating the potential of industrial energy systems for connecting to district heating systems is developed, a method for measuring process-specific induced strains and mechanical stresses of the machined workpiece as well as temperature gradients in the cutting tool is presented and the modular lightweight design of robot systems for aircraft production was further developed.
Table 1 summarizes the result. This classification is intended to assist the reader of this special issue in selecting publications.
Table 1
Classification of the publications in this special issue
Application field
Publication
Condition monitoring and predictive maintenance
Tool management optimisation through traceability and tool wear prediction in the aviation industry
Data quality evaluation for smart multi-sensor process monitoring using data fusion and machine learning algorithms
Graph-based prediction of missing KPIs through optimization and random forests for KPI Systems
Quality management
Function-oriented defect assessment in hybrid sheet molding compound tensile specimen
Quality prediction for milling processes—Automated parametrization of an end-to-end machine learning pipeline
Research on the evaluation method of the operation status of digital workshop in discrete manufacturing industry
Process monitoring and optimization
Creation and validation of systems for product and process configuration based on data analysis
Learning efficient stroke representations in clocked sheet metal processing: theoretical and practical evaluation
Investigation of industrial die-cast Al-alloys using X-ray micro-computed tomography and machine learning approach for CT segmentation
Sustainability and energy efficiency
Cascaded heat merit order for industrial energy systems to evaluate district heating potential
In-situ characterization of tool temperatures using in-tool integrated thermoresistive thin-lm sensors
Modular Lightweight Robot System for Aircraft Production Using a Generic OPC UA Skill Concept
The integration of cyber-physical systems into digitized production has changed and will change manufacturing in many ways. The ability to bridge the gap between the physical and the digital world will enable real-time monitoring, control, and optimization of production processes. This will enable greater flexibility, efficiency, and agility in manufacturing, improve product quality, and reduce waste. If models of machines, processes or entire value streams are fed with real data in real time, it will be possible to detect deviations before they occur. Simulation, among other things, can help here. On the basis of such digital process twins, it will then be possible to make qualified decisions from the process image in order to proactively steer a machine or a process in the desired direction. To be successful in the long run, digital solutions must always consider the end user, their specific competence set and the application context.

Declarations

Conflict of interest

The authors declare that they have no conflict of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Sarikaya E, Brockhaus B, Fertig A, Ranzau H, Stanula P, Walther, J (2021) Data Driven Production–Application Fields, Solutions and Benefits. Sarikaya E, Brockhaus B, Fertig A, Ranzau H, Stanula P, Walther, J (2021) Data Driven Production–Application Fields, Solutions and Benefits.
2.
Zurück zum Zitat Scarf PA (2007) A framework for condition monitoring and condition based maintenance. Qual Tech Quant Manag 4(2):301–312MathSciNetCrossRef Scarf PA (2007) A framework for condition monitoring and condition based maintenance. Qual Tech Quant Manag 4(2):301–312MathSciNetCrossRef
3.
Zurück zum Zitat Deloitte. Predictive maintenance and the smart factory: Predictive maintenance connects machines to reliability professionals through the power of the smart factory. Deloitte. Predictive maintenance and the smart factory: Predictive maintenance connects machines to reliability professionals through the power of the smart factory.
4.
Zurück zum Zitat Jourdan N, Biegel T, Knauthe V, von Buelow M, Guthe S, Metternich J (2021) A computer vision system for saw blade condition monitoring. Procedia CIRP 104:1107–1112CrossRef Jourdan N, Biegel T, Knauthe V, von Buelow M, Guthe S, Metternich J (2021) A computer vision system for saw blade condition monitoring. Procedia CIRP 104:1107–1112CrossRef
6.
Zurück zum Zitat Ziegenbein A, Fertig A, Metternich J, Weigold M (2020) Data-based process analysis in machining production: case study for quality determination in a drilling process. Procedia CIRP 93:1472–1477CrossRef Ziegenbein A, Fertig A, Metternich J, Weigold M (2020) Data-based process analysis in machining production: case study for quality determination in a drilling process. Procedia CIRP 93:1472–1477CrossRef
7.
Zurück zum Zitat Harrou F, Sun Y, Hering AS, Madakyaru M (2020) Statistical process monitoring using advanced data-driven and deep learning approaches: theory and practical applications. Elsevier Harrou F, Sun Y, Hering AS, Madakyaru M (2020) Statistical process monitoring using advanced data-driven and deep learning approaches: theory and practical applications. Elsevier
8.
Zurück zum Zitat Ziegenbein A (2022) Prädiktive qualität durch Werkzeugmaschinensignale: effekte der datenvorbereitung auf Klassifikationsergebnisse maschineller Lernverfahren. Shaker. Ziegenbein A (2022) Prädiktive qualität durch Werkzeugmaschinensignale: effekte der datenvorbereitung auf Klassifikationsergebnisse maschineller Lernverfahren. Shaker.
9.
Zurück zum Zitat Kreß A, Metternich J (2022) Einsatz von digitalen Technologien in Lernfabriken – Use Cases der Prozesslernfabrik „Center für industrielle Produktivität“. In: Factory Innovation, 2 (3), S. 60–65, GITO mbH - Verlag für Industrielle Informationstechnik und Organisation. Kreß A, Metternich J (2022) Einsatz von digitalen Technologien in Lernfabriken – Use Cases der Prozesslernfabrik „Center für industrielle Produktivität“. In: Factory Innovation, 2 (3), S. 60–65, GITO mbH - Verlag für Industrielle Informationstechnik und Organisation.
10.
Zurück zum Zitat Frick N, Metternich J (2022) The digital value stream. Twin Systems 10(4):102CrossRef Frick N, Metternich J (2022) The digital value stream. Twin Systems 10(4):102CrossRef
11.
Zurück zum Zitat Renna P, Materi S (2021) A literature review of energy efficiency and sustainability in manufacturing systems. Appl Sci 11(16):7366CrossRef Renna P, Materi S (2021) A literature review of energy efficiency and sustainability in manufacturing systems. Appl Sci 11(16):7366CrossRef
12.
Zurück zum Zitat International Organization for Standardization (2018) ISO 50001:2018 - Energy management systems - Requirements with guidance for use. Switzerland, Geneva International Organization for Standardization (2018) ISO 50001:2018 - Energy management systems - Requirements with guidance for use. Switzerland, Geneva
13.
Zurück zum Zitat Abele E, Bauerdick CJ, Strobel N, Panten N (2016) ETA learning factory: A holistic concept for teaching energy efficiency in production. Procedia CIRP 54:83–88CrossRef Abele E, Bauerdick CJ, Strobel N, Panten N (2016) ETA learning factory: A holistic concept for teaching energy efficiency in production. Procedia CIRP 54:83–88CrossRef
14.
Zurück zum Zitat Sossenheimer J, Vetter O, Abele E, Weigold M (2020) Hybrid virtual energy metering points–a low-cost energy monitoring approach for production systems based on offline trained prediction models. Procedia CIRP 93:1269–1274CrossRef Sossenheimer J, Vetter O, Abele E, Weigold M (2020) Hybrid virtual energy metering points–a low-cost energy monitoring approach for production systems based on offline trained prediction models. Procedia CIRP 93:1269–1274CrossRef
15.
Zurück zum Zitat Walther J, Dietrich B, Abele E (2019) Generic Machine Learning Approach for very short term load forecasting of production machines. In Proceedings of the International Conference on Applied Energy (pp. 1–5). Walther J, Dietrich B, Abele E (2019) Generic Machine Learning Approach for very short term load forecasting of production machines. In Proceedings of the International Conference on Applied Energy (pp. 1–5).
16.
Zurück zum Zitat Panten N (2019) Deep Reinforcement Learning zur Betriebsoptimierung hybrider industrieller Energienetze. Shaker Verlag. Panten N (2019) Deep Reinforcement Learning zur Betriebsoptimierung hybrider industrieller Energienetze. Shaker Verlag.
17.
Zurück zum Zitat Metternich J, Weigold M, Stanula P, Ziegenbein A (2019) Vernetzung und Digitalisierung für die innovative Datenanalyse (Teil 1): Künstliche Intelligenz, Maschinendaten, Algorithmen, Effizienz, Geschäftsmodelle. Werkstatt + Betrieb 2019. Metternich J, Weigold M, Stanula P, Ziegenbein A (2019) Vernetzung und Digitalisierung für die innovative Datenanalyse (Teil 1): Künstliche Intelligenz, Maschinendaten, Algorithmen, Effizienz, Geschäftsmodelle. Werkstatt + Betrieb 2019.
18.
Zurück zum Zitat Balakrishnan T, Chui M, Henke N (2020) The state of AI in 2020. McKinsey & Company, NY Balakrishnan T, Chui M, Henke N (2020) The state of AI in 2020. McKinsey & Company, NY
19.
Zurück zum Zitat Hoffmann F, Lang E, Metternich J (2022) Development of a framework for the holistic generation of ML-based business models in manufacturing. Procedia CIRP 107:209–214CrossRef Hoffmann F, Lang E, Metternich J (2022) Development of a framework for the holistic generation of ML-based business models in manufacturing. Procedia CIRP 107:209–214CrossRef
Metadaten
Titel
Digital-based production: introduction and fields of application
verfasst von
J. Metternich
A. Kreß
Publikationsdatum
16.03.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Production Engineering / Ausgabe 2/2023
Print ISSN: 0944-6524
Elektronische ISSN: 1863-7353
DOI
https://doi.org/10.1007/s11740-023-01196-5

Weitere Artikel der Ausgabe 2/2023

Production Engineering 2/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.