Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 1-2/2022

Open Access 09.02.2022 | ORIGINAL ARTICLE

Direct metal laser sintering of Ti-6Al-4V parts with reused powder

verfasst von: Vincenzo Contaldi, Pasquale Corrado, Francesco Del Re, Daniela Di Martino, Paolo Di Petta, Biagio Palumbo, Fabio Scherillo, Antonino Squillace

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 1-2/2022

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ti-6Al-4V alloy is characterised by having excellent mechanical properties and corrosion resistance combined with low specific weight and biocompatibility. This material is ideal for many high-performance engineering applications. It is increasingly used in additive manufacturing (AM) thanks to the possibility of producing very complex lightweight structures, often not achievable with conventional manufacturing techniques, as well as to easily customise products according to specific customer requirements. In powder bed fusion (PBF) processes, only a small percentage of the powder is actually melted and solidified to achieve the final part while most is left after the build. Since the surface morphology and chemistry, the shape and size distribution of the un-melted particles are inevitably modified during the process, and this may affect the resulting properties of the final products, many companies tend to use virgin powders for AM builds to keep compliance with manufacturing requirements and minimise risk. From both an economic and environmental point of view, it results crucial to develop recycling methods to reuse the metal powder as many times as possible while maintaining compliance with manufacturing standards. In this work, the effect of Ti-6Al-4V powder reuse on the evolution of powder characteristics and mechanical properties of final products additively manufactured is investigated through a systematic approach based on design of experiments.
Hinweise
Vincenzo Contaldi, Pasquale Corrado, Francesco Del Re, Daniela Di Martino, Paolo Di Petta, Biagio Palumbo, Fabio Scherillo and Antonino Squillace these authors contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

Although early use of additive manufacturing in the form of rapid prototyping was almost limited to the production of visualisation models, it is nowadays being used to fabricate end-use products in many different fields, spreading from aerospace and automotive, to the production of biomedical implants and biological tissues, and even fashion goods. AM allows not only to reduce the delivery time and total cost of complex components, but also to enhance the performance, weight and functionality of the components themselves [1, 2].
Direct metal laser sintering (DMLS) is based on the laser powder bed fusion technique and uses a Yb (Ytterbium) fiber laser to locally melt a powdered metal to build up highly complex solid structures additively layer by layer [35].
Along with the well-known repeatability, reproducibility [6] and anisotropy [7, 8] issues, a drawback of all PBF processes is that only a small percentage of the powder is actually melted and solidified to achieve the final part while most is left after the build. However, the surface morphology and chemistry, the shape and size distribution of the un-melted particles are inevitably modified during the process, so that the resulting properties of the final products may be negatively affected [911]. Therefore, many companies tend to use virgin powders for AM builds to keep compliance with manufacturing requirements and minimise risk, thus resulting in a huge amount of out-of-spec powder, either stored or wasted. This policy contributes to higher costs and a larger environmental footprint of AM processes, so it results crucial to develop qualified methods to reuse the metal powder as many times as possible while maintaining compliance with manufacturing standards [1214].
Both academic and industrial research works have faced this issue, focusing on the most widely used materials, from steels [1526] and aluminium alloys [15, 2732] to Inconel [29, 3340] and titanium alloys [29, 3335, 39, 4155]. Generally speaking, some of the results obtained for the effects of metal powder reusing seem to be inconsistent across the studies. This is ascribable to the large number of side factors involved, such as the specific AM equipment or brand of powder used, the process parameters, the procedure for reuse, etc. [56].
This work addresses the effect of EOS Ti64 (Ti-6Al-4V) powder reuse on the evolution of powder characteristics and mechanical properties of final products additively manufactured. A systematic approach based on design of experiments (DOE) and analysis of variance (ANOVA) was used to ensure effectiveness and reliability of the experimental results [5761].

2 Materials and methods

2.1 Virgin powder and powder reusing method

All the specimens for mechanical characterisation were produced on an EOSINT M280 using the optimised processing parameters provided by the producer, the EOS Part Property Profile Ti64 Performance 30 \(\mu\)m, and heat treated at 650 \(^\circ\)C for 3 hours. Both DMLS process and heat treatment were performed in Argon inert atmosphere.
Different strategies can be used to recycle metal powder in PBF processes. In this work, the same procedure implemented by the authors in [16] was executed. It consists in producing a first DMLS build using virgin powder only, after which the un-melted powder left over in the build volume and the overflow compartment is collected, sieved and then loaded above the residual powder in the feeding compartment to start the subsequent run, and so on for each DMLS run up to the last one.

2.2 Samples and testing standards for the evaluation of powder characteristics and mechanical properties

Before starting each DMLS run, powder samples were collected, in compliance with ASTM B215-15 [62], from the feeding compartment to undergo physical/chemical characterisation, as suggested in [63].
Particle size distribution (PSD) was determined according to ASTM B822-17 [64] using a Malvern MS2000 laser diffraction analyser, while powder chemical composition was evaluated through inductively coupled plasma, infrared absorption and inert gas fusion techniques (depending on the chemical elements to be detected) according to ASTM E2371-13 [65] and ASTM E1019-11 [66].
To evaluate the mechanical properties of parts additively manufactured with virgin and reused powder, ten subsequent DMLS builds were produced according the aforementioned procedure. Each build hosted six cylindrical bars to be used for the tensile tests and six near net shape samples for the high cycle fatigue (HCF) tests. Downstream of DMLS process, all specimens were machined to comply with ISO 6892-1:2016 [67] and DIN EN 6072:2011 [68] testing standards.
Tensile tests were executed at room temperature on an Instron 1185, with a cross head speed of 0.45 mm/min, according to ASTM E8/E8M-16a [69], while HCF tests were executed on a MTS Load Frame Model 312.21 with Kt=1 and R=0.1, according to ASTM E466-15 [70], and terminated at 107 cycles. The corresponding Wohler curves were obtained according to ASTM E739-10 [71].

3 Results and discussion

The 10th, 50th and 90th percentiles of the particle diameter (referred to as D10, D50 and D90, respectively) are reported in Fig. 1a, showing how the variability of particle size distribution over the number of reuses can be considered substantially physiological. Conversely, Fig. 1b points out an anomalous variation of chemical composition, in particular in terms of iron content, in the last reuse cycles.
The Minitab®18 software was used to perform one-way ANOVA, with a significance level \(\alpha =0.05\), on tensile properties, after diagnostic check of residuals. Once the ANOVA has been performed, the effect of a source of variability can be defined as statistically significant with respect to a particular response variable if the corresponding p-value results lower than \(\alpha\) [57, 72].
The obtained results for yield strength (YS0.2%), ultimate tensile strength (UTS) and elongation at break (A) are reported in Table 1: the effect of powder resuse resulted to significantly affect yield strength and ultimate tensile strength (p-value \(\ll \alpha\)), but negligible with respect to elongation at break (p-value \(\gg \alpha\)).
Table 1
One-way ANOVA results for the effect of number of reuses
Variable
Source
DOF
Adj SS
f-value
p-value
YS0.2%
Number of Reuses
9
17988
26.67
0.000
 
Error
50
3747
  
 
Total
59
   
UTS
Number of Reuses
9
12874.6
85.17
0.000
 
Error
50
839.8
  
 
Total
59
   
A
Number of Reuses
9
5.066
1.02
0.440
 
Error
50
27.681
  
 
Total
59
   
From Fig. 2, that shows the trend of the mechanical properties over the number of reuses, it is possible to see how the effect of powder reuse is actually confined to the last three runs and how it involves a slight enhancement, rather than a decay, of material performance. However, it is worth noting that the differences highlighted by the ANOVA can be considered relatively small from a technological point of view. Indeed, the corresponding stress–strain curves resulted almost overlapable, as shown in Fig. 3. In addition, the measured values resulted all consistent with those guaranteed by the supplier and required by the company.
Figure 4 shows the Wohler curves of specimens produced with virgin and reused powder. The fatigue behaviour remained substantially stable, with minimum a high cycle fatigue strength (\(\Delta \sigma\)) of 400 MPa.
The abnormal mechanical properties of samples produced within the last DMLS runs are ascribable to the aforementioned change in powder chemical composition. The observed increase of iron content was found to be caused by a steel contamination [73] of powder during sieving operations: the sieve used in this work was made of AISI 316L steel, that is characterised by a much lower hardness than titanium, and the continuous rubbing of the powder against sieve walls had caused a kind of erosion effect, resulting in the inclusion of steel powder in the titanium one. This is confirmed by both the increase of Fe content in the powder samples analysed (see Fig. 1b) and by the chemical analysis of additively manufactured material. Indeed, Fig. 5 shows the evident increase of Fe, Cr, and Ni concentrations in the alloy for the last DMLS runs. It is worth considering that these three elements, in which the AISI 316L is particularly rich, belong to the class of \(\beta\)-eutectoids with a very low solubility in \(\alpha\)-Ti [7476]. When these elements exceed this level of solubility, they form (Cr,Fe,Ni)2Ti intermetallics [77], which can significantly modify the resulting mechanical properties of the alloy [78, 79]. Given that this is a contamination, it is not surprising that the content of these elements does not exhibit a real trend upstream and downstream of the seventh run (where the first contamination probably occurred) but rather appears as a random fluctuation. In fact, what is nevertheless evident is a substantial shift in Fe content downstream of the sixth run. The presence of these intermetallics was further highlighted by scanning electron microscope-mounted electron probe X-ray microanalysis (SEM-EPMA) and energy dispersive X-ray spectrometry (EDS). Figure 6a shows the presence of a thin precipitate inside the Ti-6Al-4V lamellar matrix. It is worth noting that a thin shrinkage crack is also evident within the precipitate: this crack does not extend to the surrounding metal matrix, which is further evidence of the embrittlement effect due to the presence of Cr and Fe. The colour maps presented in Fig. 6b-e further confirm the higher concentration of Cr and Fe in the precipitate compared to the Ti-6Al-4V matrix. Finally, in the EDS spectrum of the precipitate, presented in Fig. 7a, both Fe (peak at 6.404 keV) and Cr (peak at 5.415 keV) are clearly visible. Conversely, as shown in Fig. 7b, neither of these two peaks is detectable in the EDS spectrum of the Ti-6Al-4V matrix.

4 Conclusions

Mechanical properties of titanium parts did not see a drastic variation due to powder reuse, which turned out to affect them only marginally, and in this specific case positively. The erosive effect of titanium powders on the walls of steel sieve, that caused the inclusion of steel powder in the titanium one, suggests the use of a sieve of the same material as the powder to be processed, or at least a harder one. In the specific case analysed in this work, the number of reuses was small enough not to show such detrimental changes in mechanical properties, but a higher number of reuses could have caused more significant, and probably negative, variation.
Obtained results confirm the reusability of AM powders, at least for a certain number of cycles, while maintaining compliance with manufacturing standards, contributing to the possibility for AM processes to affirm themselves as more affordable and environmentally friendly. On the other hand, these results also suggest the use of measures to minimise the undesirable effect of external contaminants, especially in the case of material that are very susceptible to contamination, such as titanium and titanium alloys.
The powder recycling strategy and the procedures for part quality assurance and data analysis proposed in this work can be adapted to other similar processes and other materials.

Acknowledgements

The authors are grateful to Giuseppe La Sala and Luca Di Matteo (MBDA Italia S.p.A.) for their support in the technological interpretation of the statistical results.

Declarations

Ethics approval

Not applicable.
Not applicable.
Provided by IMaST.

Conflict of interest

The authors declare that they have no conflict of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Gibson I, Rosen D, Stucker (2015) Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. Springer Science+Business Media: New York, NY, USA. ISBN 978-1-4939-2112-6 Gibson I, Rosen D, Stucker (2015) Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. Springer Science+Business Media: New York, NY, USA. ISBN 978-1-4939-2112-6
2.
Zurück zum Zitat Yang L, Hsu K, Baughman B, Godfrey D, Medina F, Menon M, Wiener S (2017) Additive Manufacturing of Metals: The Technology, Materials, Design and Production. Springer International Publishing AG, Cham, Switzerland. 978-3-319-55127-2 Yang L, Hsu K, Baughman B, Godfrey D, Medina F, Menon M, Wiener S (2017) Additive Manufacturing of Metals: The Technology, Materials, Design and Production. Springer International Publishing AG, Cham, Switzerland. 978-3-319-55127-2
5.
Zurück zum Zitat Calleja-Ochoa A, Ganzalez-Barrio H, Lopez de Lacalle LN, Martinez S, Albizuri J, Lamikiz A (2021) A new approach in the design of microstructured ultralight components to achieve maximum functional performance. Materials 14(7):1588. http://doi.org/10.3390/ma14071588 Calleja-Ochoa A, Ganzalez-Barrio H, Lopez de Lacalle LN, Marti­nez S, Albizuri J, Lamikiz A (2021) A new approach in the design of microstructured ultralight components to achieve maximum functional performance. Materials 14(7):1588. http://​doi.​org/​10.​3390/​ma14071588
8.
Zurück zum Zitat Del Re F, Scherillo F, Contaldi V, Palumbo B, Squillace A, Corrado P, Di Petta P (2019) Mechanical properties characterisation of AlSi10Mg parts produced by laser powder bed fusion additive manufacturing. Int J Mater Res 110(5):436-446. http://doi.org/10.3139/146.111761 Del Re F, Scherillo F, Contaldi V, Palumbo B, Squillace A, Corrado P, Di Petta P (2019) Mechanical properties characterisation of AlSi10Mg parts produced by laser powder bed fusion additive manufacturing. Int J Mater Res 110(5):436-446. http://​doi.​org/​10.​3139/​146.​111761
16.
Zurück zum Zitat Contaldi V, Del Re F, Palumbo B, Squillace A, Corrado P, Di Petta P (2019) Mechanical characterisation of stainless steel parts produced by direct metal laser sintering with virgin and reused powder. Int J Adv Manuf Technol 105:3337-3351. http://doi.org/0.1007/s00170-019-04416-4 Contaldi V, Del Re F, Palumbo B, Squillace A, Corrado P, Di Petta P (2019) Mechanical characterisation of stainless steel parts produced by direct metal laser sintering with virgin and reused powder. Int J Adv Manuf Technol 105:3337-3351. http://​doi.​org/​0.​1007/​s00170-019-04416-4
27.
Zurück zum Zitat Del Re F, Contaldi V, Astarita A, Palumbo B, Squillace A, Corrado P, Di Petta P (2018) Statistical approach for assessing the effect of powder reuse on the final quality of AlSi10Mg parts produced by laser powder bed fusion. Int J Adv Manuf Technol 97(5-8):2231-2240. http://doi.org/10.1007/s00170-018-2090-y Del Re F, Contaldi V, Astarita A, Palumbo B, Squillace A, Corrado P, Di Petta P (2018) Statistical approach for assessing the effect of powder reuse on the final quality of AlSi10Mg parts produced by laser powder bed fusion. Int J Adv Manuf Technol 97(5-8):2231-2240. http://​doi.​org/​10.​1007/​s00170-018-2090-y
40.
Zurück zum Zitat Rock C, Ledford C, Garcia-Avila M, West H, Miller VM, Pankow M, Dehoff R, Horn T (2021) The influence of powder reuse on the properties of nickel super alloy ATI 718TM in laser powder bed fusion additive manufacturing. Metall Mater Trans B 5B:676-688. http://doi.org/10.1007/s11663-020-02040-2 Rock C, Ledford C, Garcia-Avila M, West H, Miller VM, Pankow M, Dehoff R, Horn T (2021) The influence of powder reuse on the properties of nickel super alloy ATI 718TM in laser powder bed fusion additive manufacturing. Metall Mater Trans B 5B:676-688. http://​doi.​org/​10.​1007/​s11663-020-02040-2
45.
53.
Zurück zum Zitat Gatto ML, Groppo R, Bloise N,Fassina L, Visai L, Galati M, Iuliano L, Mengucci P (2021) Topological, mechanical and biological properties of Ti6Al4V scaffolds for bone tissue regeneration fabricated with reused powders via electron beam melting. Materials 14:224. http://doi.org/10.3390/ma14010224 Gatto ML, Groppo R, Bloise N,Fassina L, Visai L, Galati M, Iuliano L, Mengucci P (2021) Topological, mechanical and biological properties of Ti6Al4V scaffolds for bone tissue regeneration fabricated with reused powders via electron beam melting. Materials 14:224. http://​doi.​org/​10.​3390/​ma14010224
55.
57.
Zurück zum Zitat Montgomery DC (2019) Design and Analysis of Experiments. John Wiley & Sons: Hoboken, NJ, USA. ISBN 978-1-119-49244-3 Montgomery DC (2019) Design and Analysis of Experiments. John Wiley & Sons: Hoboken, NJ, USA. ISBN 978-1-119-49244-3
60.
Zurück zum Zitat Palumbo B, Del Re F, Martorelli M, Lanzotti A, Corrado P (2017) Tensile properties characterization of AlSi10Mg parts produced by Direct Metal Laser Sintering via Nested Effects Modeling. Materials 10(2):144. http://doi.org/10.3390/ma10020144 Palumbo B, Del Re F, Martorelli M, Lanzotti A, Corrado P (2017) Tensile properties characterization of AlSi10Mg parts produced by Direct Metal Laser Sintering via Nested Effects Modeling. Materials 10(2):144. http://​doi.​org/​10.​3390/​ma10020144
65.
Zurück zum Zitat ASTM (2013) E2371-13 Standard test method for analysis of titanium and titanium alloys by direct current plasma and inductively coupled plasma atomic emission spectrometry (Performance-Based Test Methodology). ASTM International. http://doi.org/10.1520/E2371-13 ASTM (2013) E2371-13 Standard test method for analysis of titanium and titanium alloys by direct current plasma and inductively coupled plasma atomic emission spectrometry (Performance-Based Test Methodology). ASTM International. http://​doi.​org/​10.​1520/​E2371-13
66.
Zurück zum Zitat ASTM (2014) E1019-11 Standard test methods for determination of carbon, sulfur, nitrogen, and oxygen in steel, iron, nickel, and cobalt alloys by various combustion and fusion techniques. ASTM International. http://doi.org/10.1520/E1019-11 ASTM (2014) E1019-11 Standard test methods for determination of carbon, sulfur, nitrogen, and oxygen in steel, iron, nickel, and cobalt alloys by various combustion and fusion techniques. ASTM International. http://​doi.​org/​10.​1520/​E1019-11
67.
Zurück zum Zitat ISO EN (2016) Standard 6892-1:2016 Metallic Materials, Tensile Testing, Part 1: Method of Test at Room Temperature. International Organization for Standardization. ICS 77(040):10 ISO EN (2016) Standard 6892-1:2016 Metallic Materials, Tensile Testing, Part 1: Method of Test at Room Temperature. International Organization for Standardization. ICS 77(040):10
72.
Zurück zum Zitat Montgomery DC, Runger GC (2019) Applied Statistics and Probability for Engineers. John Wiley & Sons: Hoboken, NJ, USA. ISBN 978-1-119-58559-6 Montgomery DC, Runger GC (2019) Applied Statistics and Probability for Engineers. John Wiley & Sons: Hoboken, NJ, USA. ISBN 978-1-119-58559-6
73.
Zurück zum Zitat Santecchia E, Mengucci P, Gatto A, Bassoli E, Defanti S, Bazzucca G (2019) Cross-contamination quantification in powders for additive manufacturing: A study on Ti-6Al-4V and maraging steel. Materials 12:2342. http://doi.org/10.3390/ma12152342 Santecchia E, Mengucci P, Gatto A, Bassoli E, Defanti S, Bazzucca G (2019) Cross-contamination quantification in powders for additive manufacturing: A study on Ti-6Al-4V and maraging steel. Materials 12:2342. http://​doi.​org/​10.​3390/​ma12152342
79.
Zurück zum Zitat Lutjering G, Williams JC (2007) Titanium. Springer-Verlag, Berlin, Germany. 978-3-540-71397-5 Lutjering G, Williams JC (2007) Titanium. Springer-Verlag, Berlin, Germany. 978-3-540-71397-5
Metadaten
Titel
Direct metal laser sintering of Ti-6Al-4V parts with reused powder
verfasst von
Vincenzo Contaldi
Pasquale Corrado
Francesco Del Re
Daniela Di Martino
Paolo Di Petta
Biagio Palumbo
Fabio Scherillo
Antonino Squillace
Publikationsdatum
09.02.2022
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 1-2/2022
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-022-08807-y

Weitere Artikel der Ausgabe 1-2/2022

The International Journal of Advanced Manufacturing Technology 1-2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.