Skip to main content
Erschienen in: Autonomous Robots 3/2014

01.03.2014

Direction-changing fall control of humanoid robots: theory and experiments

verfasst von: Ambarish Goswami, Seung-kook Yun, Umashankar Nagarajan, Sung-Hee Lee, KangKang Yin, Shivaram Kalyanakrishnan

Erschienen in: Autonomous Robots | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Humanoid robots are expected to share human environments in the future and it is important to ensure the safety of their operation. A serious threat to safety is the fall of such robots, which can seriously damage the robot itself as well as objects in its surrounding. Although fall is a rare event in the life of a humanoid robot, the robot must be equipped with a robust fall strategy since the consequences of fall can be catastrophic. In this paper we present a strategy to change the default fall direction of a robot, during the fall. By changing the fall direction the robot may avoid falling on a delicate object or on a person. Our approach is based on the key observation that the toppling motion of a robot necessarily occurs at an edge of its support area. To modify the fall direction the robot needs to change the position and orientation of this edge vis-a-vis the prohibited directions. We achieve this through intelligent stepping as soon as the fall is predicted. We compute the optimal stepping location which results in the safest fall. Additional improvement to the fall controller is achieved through inertia shaping, which is a principled approach aimed at manipulating the robot’s centroidal inertia, thereby indirectly controlling its fall direction. We describe the theory behind this approach and demonstrate our results through simulation and experiments of the Aldebaran NAO H25 robot. To our knowledge, this is the first implementation of a controller that attempts to change the fall direction of a humanoid robot.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The robot can temporarily topple about a vertex of the foot support polygon.
 
2
More detail about Capture Point is included in Sect. 5.2.2.
 
3
We assume 6-DoF legs.
 
4
Extension to a general case with multiple objects such as in Fig 16 is trivial once the desired fall direction is chosen.
 
5
The actual determination of this is beyond the scope of this paper.
 
Literatur
Zurück zum Zitat Ashton-Miller, J. A. (2000). Biomechanics of mobility and fall-arrests in older adults. RESNA 2000: Technology for the new millenium (pp. 537–542). Florida, Orlando. Ashton-Miller, J. A. (2000). Biomechanics of mobility and fall-arrests in older adults. RESNA 2000: Technology for the new millenium (pp. 537–542). Florida, Orlando.
Zurück zum Zitat Buss, S. R. (2004). Introduction to inverse kinematics with Jacobian transpose, pseudoinverse and damped least squares methods. Technical Report. San Diego: Department of Mathematics, University of California. : Department of Mathematics, University of California. Buss, S. R. (2004). Introduction to inverse kinematics with Jacobian transpose, pseudoinverse and damped least squares methods. Technical Report. San Diego: Department of Mathematics, University of California. : Department of Mathematics, University of California.
Zurück zum Zitat Chia, P. C., Lee, C. H., Chen, T. S., Kuo, C. H., Lee, M. Y., & Chen, C. M. S. (2011). Correlations of falling signals between biped robots and humans with 3-axis accelerometers. In International Conference on System Science and Engineering (pp. 509–514). Macau, China. Chia, P. C., Lee, C. H., Chen, T. S., Kuo, C. H., Lee, M. Y., & Chen, C. M. S. (2011). Correlations of falling signals between biped robots and humans with 3-axis accelerometers. In International Conference on System Science and Engineering (pp. 509–514). Macau, China.
Zurück zum Zitat Cordero, A. F. (2003). Human gait, stumble and ... fall? Ph.D. Thesis, University of Twente, Enschede, The Netherlands. Cordero, A. F. (2003). Human gait, stumble and ... fall? Ph.D. Thesis, University of Twente, Enschede, The Netherlands.
Zurück zum Zitat Cordero, A. F., Koopman, H., & van der Helm, F. (2003). Multiple-step strategies to recover from stumbling perturbations. Gait & Posture, 18(1), 47–59.CrossRef Cordero, A. F., Koopman, H., & van der Helm, F. (2003). Multiple-step strategies to recover from stumbling perturbations. Gait & Posture, 18(1), 47–59.CrossRef
Zurück zum Zitat Cordero, A. F., Koopman, H., & van der Helm, F. (2004). Mechanical model of the recovery from stumbling. Biological Cybernetics, 91(4), 212–22.CrossRefMATH Cordero, A. F., Koopman, H., & van der Helm, F. (2004). Mechanical model of the recovery from stumbling. Biological Cybernetics, 91(4), 212–22.CrossRefMATH
Zurück zum Zitat DeGoede, K. M., & Ashton-Miller, J. A. (2003). Biomechanical simulations of forward fall arrests: Effects of upper extremity arrest strategy, gender and aging-related declines in muscle strength. Journal of Biomechanics, 36, 413–420.CrossRef DeGoede, K. M., & Ashton-Miller, J. A. (2003). Biomechanical simulations of forward fall arrests: Effects of upper extremity arrest strategy, gender and aging-related declines in muscle strength. Journal of Biomechanics, 36, 413–420.CrossRef
Zurück zum Zitat Fantoni, I., & Lozano, R. (2001). Non-linear control for underactuated mechanical systems (communications and control engineering). London: Springer-Verlag. Fantoni, I., & Lozano, R. (2001). Non-linear control for underactuated mechanical systems (communications and control engineering). London: Springer-Verlag.
Zurück zum Zitat Fujiwara, K., F., K., Saito, H., Kajita, S., Harada, K., & Hirukawa, H. (2004). Falling motion control of a humanoid robot trained by virtual supplementary tests. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 1077–1082). New Orleans, LA, USA. Fujiwara, K., F., K., Saito, H., Kajita, S., Harada, K., & Hirukawa, H. (2004). Falling motion control of a humanoid robot trained by virtual supplementary tests. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 1077–1082). New Orleans, LA, USA.
Zurück zum Zitat Fujiwara, K., Kajita, S., Harada, K., Kaneko, K., Morisawa, M., Kanehiro, F., et al. (2006). Towards an optimal falling motion for a humanoid robot. In Humanoids06 (pp. 524–529). Genova, Italy. Fujiwara, K., Kajita, S., Harada, K., Kaneko, K., Morisawa, M., Kanehiro, F., et al. (2006). Towards an optimal falling motion for a humanoid robot. In Humanoids06 (pp. 524–529). Genova, Italy.
Zurück zum Zitat Fujiwara, K., Kajita, S., Harada, K., Kaneko, K., Morisawa, M., Kanehiro, F., Nakaoka, S., Hirukawa, H. (2007). An optimal planning of falling motions of a humanoid robot. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 456–462). San Diego, California, USA. Fujiwara, K., Kajita, S., Harada, K., Kaneko, K., Morisawa, M., Kanehiro, F., Nakaoka, S., Hirukawa, H. (2007). An optimal planning of falling motions of a humanoid robot. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 456–462). San Diego, California, USA.
Zurück zum Zitat Fujiwara, K., Kanehiro, F., Kajita, S., Hirukawa, H. (2004). Safe knee landing of a human-size humanoid robot while falling forward. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 503–508). Sendai, Japan. Fujiwara, K., Kanehiro, F., Kajita, S., Hirukawa, H. (2004). Safe knee landing of a human-size humanoid robot while falling forward. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 503–508). Sendai, Japan.
Zurück zum Zitat Fujiwara, K., Kanehiro, F., Kajita, S., Kaneko, K., Yokoi, K., & Hirukawa, H. (2002). UKEMI: Falling motion control to minimize damage to biped humanoid robot. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2521–2526). Lausanne, Switzerland. Fujiwara, K., Kanehiro, F., Kajita, S., Kaneko, K., Yokoi, K., & Hirukawa, H. (2002). UKEMI: Falling motion control to minimize damage to biped humanoid robot. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2521–2526). Lausanne, Switzerland.
Zurück zum Zitat Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P., Marnier, B., Serre, J., & Maisonnier, B. (2009). Mechatronic design of NAO humanoid. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 2124–2129). Kobe, Japan. Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P., Marnier, B., Serre, J., & Maisonnier, B. (2009). Mechatronic design of NAO humanoid. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 2124–2129). Kobe, Japan.
Zurück zum Zitat Hobbelen, D. G. E., & Wisse, M. (2007). A disturbance rejection measure for limit cycle walkers: The gait sensitivity norm. IEEE Transactions on Robotics and Automation, 23(6), 1213–1224.CrossRef Hobbelen, D. G. E., & Wisse, M. (2007). A disturbance rejection measure for limit cycle walkers: The gait sensitivity norm. IEEE Transactions on Robotics and Automation, 23(6), 1213–1224.CrossRef
Zurück zum Zitat Höhn, O., Gačnik, J., & Gerth, W. (2006). Detection and classification of posture instabilities of bipedal robots. In Climbing and walking robots (pp. 409–416). Berlin/Heidelberg: Springer. Höhn, O., Gačnik, J., & Gerth, W. (2006). Detection and classification of posture instabilities of bipedal robots. In Climbing and walking robots (pp. 409–416). Berlin/Heidelberg: Springer.
Zurück zum Zitat Höhn, O., & Gerth, W. (2009). Probabilistic balance monitoring for bipedal robots. International Journal of Robotics Research, 28(2), 245–256.CrossRef Höhn, O., & Gerth, W. (2009). Probabilistic balance monitoring for bipedal robots. International Journal of Robotics Research, 28(2), 245–256.CrossRef
Zurück zum Zitat Ishida, T., Kuroki, Y., & Takahashi, T. (2004). Analysis of motions of a small biped entertainment robot. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 142–147). Sendai, Japan. Ishida, T., Kuroki, Y., & Takahashi, T. (2004). Analysis of motions of a small biped entertainment robot. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 142–147). Sendai, Japan.
Zurück zum Zitat Kalyanakrishnan, S., & Goswami, A. (2011). Learning to predict humanoid fall. International Journal of Humanoid Robots, 8(2), 245–273.CrossRef Kalyanakrishnan, S., & Goswami, A. (2011). Learning to predict humanoid fall. International Journal of Humanoid Robots, 8(2), 245–273.CrossRef
Zurück zum Zitat Kanoi, R. & Hartland, C. (2010). Fall detections in humanoid walk patterns using reservoir computing based control architecture. In 5th National conference on Control Architecture of Robots. Douai, France. Kanoi, R. & Hartland, C. (2010). Fall detections in humanoid walk patterns using reservoir computing based control architecture. In 5th National conference on Control Architecture of Robots. Douai, France.
Zurück zum Zitat Karssen, J. G. D., & Wisse, M. (2009). Fall detection in walking robots by multi-way principal component analysis. Robotica, 27(2), 249–257.CrossRef Karssen, J. G. D., & Wisse, M. (2009). Fall detection in walking robots by multi-way principal component analysis. Robotica, 27(2), 249–257.CrossRef
Zurück zum Zitat Kunihiro, O., Koji, T., & Yasuo, K. (2007) Falling motion control for humanoid robots while walking. In Humanoids07, Pittsburgh, 2007 (pp. 306–311). Kunihiro, O., Koji, T., & Yasuo, K. (2007) Falling motion control for humanoid robots while walking. In Humanoids07, Pittsburgh, 2007 (pp. 306–311).
Zurück zum Zitat LaValle, S. M. (2006). Planning algorithms. Cambridge, UK: Cambridge University Press.CrossRefMATH LaValle, S. M. (2006). Planning algorithms. Cambridge, UK: Cambridge University Press.CrossRefMATH
Zurück zum Zitat Murray, R. M., Li, Z., & Sastry, S. (1994). A mathematical introduction to robotic manipulation. Boca Raton: CRC Press.MATH Murray, R. M., Li, Z., & Sastry, S. (1994). A mathematical introduction to robotic manipulation. Boca Raton: CRC Press.MATH
Zurück zum Zitat Nagarajan, U., Goswami, A.: Generalized direction changing fall control of humanoid robots among multiple objects. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 3316–3322). Anchorage, Alaska. Nagarajan, U., Goswami, A.: Generalized direction changing fall control of humanoid robots among multiple objects. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 3316–3322). Anchorage, Alaska.
Zurück zum Zitat Ogata, K., Terada, K., & Kuniyoshi, Y. (2008). Real-time selection and generation of fall damagae reduction actions for humanoid robots. In Humanoids, 08 (pp. 233–238). Daejeon, Korea. Ogata, K., Terada, K., & Kuniyoshi, Y. (2008). Real-time selection and generation of fall damagae reduction actions for humanoid robots. In Humanoids, 08 (pp. 233–238). Daejeon, Korea.
Zurück zum Zitat Pratt, J., Carff, J., Drakunov, S. & Goswami, A. (2006). Capture point: A step toward humanoid push recovery. In Humanoids06. Genoa, Italy. Pratt, J., Carff, J., Drakunov, S. & Goswami, A. (2006). Capture point: A step toward humanoid push recovery. In Humanoids06. Genoa, Italy.
Zurück zum Zitat Renner, R. & Behnke, S. (2006) Instability detection and fall avoidance for a humanoid using attitude sensors and reflexes. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2967–2973). Beijing. Renner, R. & Behnke, S. (2006) Instability detection and fall avoidance for a humanoid using attitude sensors and reflexes. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2967–2973). Beijing.
Zurück zum Zitat Robinovitch, S. N., Brumer, R., & Maurer, J. (2004). Effect of the “squat protective response” on impact velocity during backward falls. Journal of Biomechanics, 37(9), 1329–1337.CrossRef Robinovitch, S. N., Brumer, R., & Maurer, J. (2004). Effect of the “squat protective response” on impact velocity during backward falls. Journal of Biomechanics, 37(9), 1329–1337.CrossRef
Zurück zum Zitat Robinovitch, S. R., Chiu, J., Sandler, R., & Liu, Q. (2000). Impact severity in self-initiated sits and falls associates with center-of-gravity excursion during descent. Journal of Biomechanics, 33, 863–870.CrossRef Robinovitch, S. R., Chiu, J., Sandler, R., & Liu, Q. (2000). Impact severity in self-initiated sits and falls associates with center-of-gravity excursion during descent. Journal of Biomechanics, 33, 863–870.CrossRef
Zurück zum Zitat Robinovitch, S. R., Hsiao, E. T., Sandler, R., Cortez, J., Liu, Q., & Paiment, G. D. (2000). Prevention of falls and fall-related fractures through biomechanics. Exercise and Sports Sciences Review, 28(2), 74–79. Robinovitch, S. R., Hsiao, E. T., Sandler, R., Cortez, J., Liu, Q., & Paiment, G. D. (2000). Prevention of falls and fall-related fractures through biomechanics. Exercise and Sports Sciences Review, 28(2), 74–79.
Zurück zum Zitat Ruiz-del Solar, J., Moya, J. & Parra-Tsunekawa, I. (2010). Fall detection and management in biped humanoid robots. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 3323– 3328). Ruiz-del Solar, J., Moya, J. & Parra-Tsunekawa, I. (2010). Fall detection and management in biped humanoid robots. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 3323– 3328).
Zurück zum Zitat Ruiz-del Solar, J., Palma-Amestoy, R., Marchant, R., Parra-Tsunekawa, I., & Zegers, P. (2009). Learning to fall: Designing low damage fall sequences for humanoid soccer robots. Robotics and Autonomous Systems, 57(8), 796–807. Ruiz-del Solar, J., Palma-Amestoy, R., Marchant, R., Parra-Tsunekawa, I., & Zegers, P. (2009). Learning to fall: Designing low damage fall sequences for humanoid soccer robots. Robotics and Autonomous Systems, 57(8), 796–807.
Zurück zum Zitat Spong, M. W., Corke, P., & Lozano, R. (2001). Nonlinear control of inertia wheel pendulum. Automatica, 37, 1845–1851.CrossRefMATH Spong, M. W., Corke, P., & Lozano, R. (2001). Nonlinear control of inertia wheel pendulum. Automatica, 37, 1845–1851.CrossRefMATH
Zurück zum Zitat Stephens, B.: Humanoid push recovery. In Humanoids07. Pittsburgh, PA, USA. Stephens, B.: Humanoid push recovery. In Humanoids07. Pittsburgh, PA, USA.
Zurück zum Zitat Tan, J. S., Eng, J. J., Robinovitch, S. R., & Warnick, B. (2006). Wrist impact velocities are smaller in forward falls than backward falls from standing. Journal of Biomechanics, 39(10), 1804–1811.CrossRef Tan, J. S., Eng, J. J., Robinovitch, S. R., & Warnick, B. (2006). Wrist impact velocities are smaller in forward falls than backward falls from standing. Journal of Biomechanics, 39(10), 1804–1811.CrossRef
Zurück zum Zitat Walker, M. W., & Orin, D. (1982). Efficient dynamic computer simulation of robotic mechanisms. ASME Journal of Dynamic Systems, Measurement, and Control, 104, 205–211.CrossRefMATH Walker, M. W., & Orin, D. (1982). Efficient dynamic computer simulation of robotic mechanisms. ASME Journal of Dynamic Systems, Measurement, and Control, 104, 205–211.CrossRefMATH
Zurück zum Zitat Welch, G. & Bishop, G. (1995). An introduction to the Kalman filter. Technical Report. Chapel Hill, NC, USA Welch, G. & Bishop, G. (1995). An introduction to the Kalman filter. Technical Report. Chapel Hill, NC, USA
Zurück zum Zitat Wilken, T., Missura, M., & Behnke, S. (2009). Designing falling motions for a humanoid soccer goalie. Proceedings of the 4th Workshop on Humanoid Soccer Robots (Humanoids 2009) (pp. 79–84). Paris, France. Wilken, T., Missura, M., & Behnke, S. (2009). Designing falling motions for a humanoid soccer goalie. Proceedings of the 4th Workshop on Humanoid Soccer Robots (Humanoids 2009) (pp. 79–84). Paris, France.
Zurück zum Zitat Yin, K., Loken, K. & van de Panne, M. (2007). Simbicon: Simple biped locomotion control. ACM Transactions on Graphics, 26(3) (August 2007). Yin, K., Loken, K. & van de Panne, M. (2007). Simbicon: Simple biped locomotion control. ACM Transactions on Graphics, 26(3) (August 2007).
Zurück zum Zitat Yun, S. K. & Goswami, A. (2012) Humanoid robot safe fall using Aldebaran NAO. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 71–78). St. Paul, Minnesota, US. Yun, S. K. & Goswami, A. (2012) Humanoid robot safe fall using Aldebaran NAO. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 71–78). St. Paul, Minnesota, US.
Zurück zum Zitat Yun, S. K., Goswami, A. & Sakagami, Y. (2009). Safe fall: Humanoid robot fall direction change through intelligent stepping and inertia shaping. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 781–787). Kobe, Japan. Yun, S. K., Goswami, A. & Sakagami, Y. (2009). Safe fall: Humanoid robot fall direction change through intelligent stepping and inertia shaping. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 781–787). Kobe, Japan.
Metadaten
Titel
Direction-changing fall control of humanoid robots: theory and experiments
verfasst von
Ambarish Goswami
Seung-kook Yun
Umashankar Nagarajan
Sung-Hee Lee
KangKang Yin
Shivaram Kalyanakrishnan
Publikationsdatum
01.03.2014
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 3/2014
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-013-9343-2

Weitere Artikel der Ausgabe 3/2014

Autonomous Robots 3/2014 Zur Ausgabe

Neuer Inhalt