Skip to main content
Erschienen in: Foundations of Computational Mathematics 3/2018

01.03.2017

Discrete ABP Estimate and Convergence Rates for Linear Elliptic Equations in Non-divergence Form

verfasst von: Ricardo H. Nochetto, Wujun Zhang

Erschienen in: Foundations of Computational Mathematics | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We design a two-scale finite element method (FEM) for linear elliptic PDEs in non-divergence form \(A(x) : D^2 u(x) = f(x)\) in a bounded but not necessarily convex domain \(\Omega \) and study it in the max norm. The fine scale is given by the meshsize h, whereas the coarse scale \(\epsilon \) is dictated by an integro-differential approximation of the PDE. We show that the FEM satisfies the discrete maximum principle for any uniformly positive definite matrix A provided that the mesh is face weakly acute. We establish a discrete Alexandroff–Bakelman–Pucci (ABP) estimate which is suitable for finite element analysis. Its proof relies on a discrete Alexandroff estimate which expresses the min of a convex piecewise linear function in terms of the measure of its sub-differential, and thus of jumps of its gradient. The discrete ABP estimate leads, under suitable regularity assumptions on A and u, to pointwise error estimates of the form
$$\begin{aligned} \Vert \,u - u^{\epsilon }_h\,\Vert _{L^{\infty }(\Omega )} \le \, C(A,u) \, h^{2\alpha /(2 + \alpha )} \big | \ln h \big | \qquad 0< \alpha \le 2, \end{aligned}$$
provided \(\epsilon \approx h^{2/(2+\alpha )}\). Such a convergence rate is at best of order \( h \big | \ln h \big |\), which turns out to be quasi-optimal.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Barles and E. R. Jakobsen. Error bounds for monotone approximation schemes for Hamilton-Jacobi-Bellman equations. SIAM J. Numer. Anal., 43(2):540–558 (electronic), 2005. G. Barles and E. R. Jakobsen. Error bounds for monotone approximation schemes for Hamilton-Jacobi-Bellman equations. SIAM J. Numer. Anal., 43(2):540–558 (electronic), 2005.
2.
Zurück zum Zitat G. Barles and P. E. Souganidis. Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Anal., 4:271–283, 1991.MathSciNetMATH G. Barles and P. E. Souganidis. Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Anal., 4:271–283, 1991.MathSciNetMATH
3.
Zurück zum Zitat S. Bartels. Stability and convergence of finite-element approximation schemes for harmonic maps. SIAM J. Numer. Anal., 43(1):220–238 (electronic), 2005. S. Bartels. Stability and convergence of finite-element approximation schemes for harmonic maps. SIAM J. Numer. Anal., 43(1):220–238 (electronic), 2005.
4.
Zurück zum Zitat J.-D. Benamou, B. D. Froese and A. M. Oberman. Numerical solution of the optimal transportation problem using the Monge-Ampère equation. J. Comput. Phys., 260:107–126, 2014.MathSciNetCrossRefMATH J.-D. Benamou, B. D. Froese and A. M. Oberman. Numerical solution of the optimal transportation problem using the Monge-Ampère equation. J. Comput. Phys., 260:107–126, 2014.MathSciNetCrossRefMATH
5.
Zurück zum Zitat S. N. Bernstein. Sur la généralisation du probléme de Dirichlet. Math. Ann., 62:253–271, 1906; 69:82–136. 1910. S. N. Bernstein. Sur la généralisation du probléme de Dirichlet. Math. Ann., 62:253–271, 1906; 69:82–136. 1910.
6.
Zurück zum Zitat J. F. Bonnans and H. Zidani. Consistency of generalized finite difference schemes for the stochastic HJB equation. SIAM J. Numer. Anal., 41(3):1008–1021, 2003.MathSciNetCrossRefMATH J. F. Bonnans and H. Zidani. Consistency of generalized finite difference schemes for the stochastic HJB equation. SIAM J. Numer. Anal., 41(3):1008–1021, 2003.MathSciNetCrossRefMATH
7.
Zurück zum Zitat S. Brenner and L.R. Scott. The Mathematical Theory of Finite Element Methods. Berlin: Springer 2014. S. Brenner and L.R. Scott. The Mathematical Theory of Finite Element Methods. Berlin: Springer 2014.
8.
Zurück zum Zitat L. Caffarelli. Elliptic second order equations. Rend. Sem. Mat. Fis. Milano, 58:253–284 (1990), 1988.MathSciNet L. Caffarelli. Elliptic second order equations. Rend. Sem. Mat. Fis. Milano, 58:253–284 (1990), 1988.MathSciNet
9.
Zurück zum Zitat L. Caffarelli and X. Cabré. Fully nonlinear elliptic equations, volume 43 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 1995. L. Caffarelli and X. Cabré. Fully nonlinear elliptic equations, volume 43 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 1995.
10.
Zurück zum Zitat L. Caffarelli, M.G. Crandall, M. Kocan, and A. Świech, On viscosity solutions of fully nonlinear equations with measurable ingredients. Commun. Pure Appl. Math., 1996. L. Caffarelli, M.G. Crandall, M. Kocan, and A. Świech, On viscosity solutions of fully nonlinear equations with measurable ingredients. Commun. Pure Appl. Math., 1996.
11.
Zurück zum Zitat L. Caffarelli and L. Silvestre. Smooth approximations of solutions to nonconvex fully nonlinear elliptic equations. In Nonlinear partial differential equations and related topics, vol. 229, pp. 67–85. Am. Math. Soc., Providence, RI, 2010. L. Caffarelli and L. Silvestre. Smooth approximations of solutions to nonconvex fully nonlinear elliptic equations. In Nonlinear partial differential equations and related topics, vol. 229, pp. 67–85. Am. Math. Soc., Providence, RI, 2010.
12.
Zurück zum Zitat L. Caffarelli and P. E. Souganidis. A rate of convergence for monotone finite difference approximations to fully nonlinear, uniformly elliptic PDEs. Comm. Pure Appl. Math., 61:1–17, 2008.MathSciNetCrossRefMATH L. Caffarelli and P. E. Souganidis. A rate of convergence for monotone finite difference approximations to fully nonlinear, uniformly elliptic PDEs. Comm. Pure Appl. Math., 61:1–17, 2008.MathSciNetCrossRefMATH
13.
Zurück zum Zitat F. Camilli and M. Falcone. An approximation scheme for the optimal control of diffusion processes. RAIRO Modél. Math. Anal. Numér., 29(1):97–122, 1995.MathSciNetCrossRefMATH F. Camilli and M. Falcone. An approximation scheme for the optimal control of diffusion processes. RAIRO Modél. Math. Anal. Numér., 29(1):97–122, 1995.MathSciNetCrossRefMATH
14.
Zurück zum Zitat Ph. Ciartet and P.A. Raviart. Maximum principle and uniform convergence for the finite element method. Comp. Meths. Appl. Mech. Eng., 2(1):17-31. 1973.MathSciNetCrossRef Ph. Ciartet and P.A. Raviart. Maximum principle and uniform convergence for the finite element method. Comp. Meths. Appl. Mech. Eng., 2(1):17-31. 1973.MathSciNetCrossRef
15.
Zurück zum Zitat F. Chiarenza, M. Frasca, and P. Longo. Interior \(W^2_p\) estimates for nondivergence elliptic equations with discontinuous coefficients. Ricerche Mat., 40(1):149–168, 1991.MathSciNetMATH F. Chiarenza, M. Frasca, and P. Longo. Interior \(W^2_p\) estimates for nondivergence elliptic equations with discontinuous coefficients. Ricerche Mat., 40(1):149–168, 1991.MathSciNetMATH
16.
Zurück zum Zitat F. Chiarenza, M. Frasca, and P. Longo. \(W^2_p\)-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients. Trans. Amer. Math. Soc., 336(2):841–853, 1993.MATH F. Chiarenza, M. Frasca, and P. Longo. \(W^2_p\)-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients. Trans. Amer. Math. Soc., 336(2):841–853, 1993.MATH
17.
Zurück zum Zitat P. G. Ciarlet. Basic error estimates for elliptic problems. In Handbook of numerical analysis, Vol. II, Handb. Numer. Anal., II, pp. 17–351. North-Holland, Amsterdam, 1991. P. G. Ciarlet. Basic error estimates for elliptic problems. In Handbook of numerical analysis, Vol. II, Handb. Numer. Anal., II, pp. 17–351. North-Holland, Amsterdam, 1991.
18.
Zurück zum Zitat E. J. Dean and R. Glowinski. Numerical solution of the two-dimensional elliptic Monge-Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach. C. R. Math. Acad. Sci. Paris, 336(9):779–784, 2003.MathSciNetCrossRefMATH E. J. Dean and R. Glowinski. Numerical solution of the two-dimensional elliptic Monge-Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach. C. R. Math. Acad. Sci. Paris, 336(9):779–784, 2003.MathSciNetCrossRefMATH
19.
Zurück zum Zitat K. Debrabant and E. R. Jakobsen. Semi-Lagrangian schemes for linear and fully non-linear diffusion equations. Math. Comp., 82(283):1433–1462, 2013.MathSciNetCrossRefMATH K. Debrabant and E. R. Jakobsen. Semi-Lagrangian schemes for linear and fully non-linear diffusion equations. Math. Comp., 82(283):1433–1462, 2013.MathSciNetCrossRefMATH
20.
Zurück zum Zitat X. Feng, L. Hennings, and M. Neilan. Finite element methods for second order linear elliptic partial differential equations in non-divergence form. Math. Comput., (to appear). X. Feng, L. Hennings, and M. Neilan. Finite element methods for second order linear elliptic partial differential equations in non-divergence form. Math. Comput., (to appear).
21.
Zurück zum Zitat W. H. Fleming and H. M. Soner. Controlled Markov processes and viscosity solutions, volume 25 of Stochastic Modelling and Applied Probability. Springer, New York, Second Edition, 2006. W. H. Fleming and H. M. Soner. Controlled Markov processes and viscosity solutions, volume 25 of Stochastic Modelling and Applied Probability. Springer, New York, Second Edition, 2006.
22.
Zurück zum Zitat D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order, volume 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin, Second Edition, 1983. D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order, volume 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin, Second Edition, 1983.
23.
Zurück zum Zitat B. Grünbaum. Convex polytopes, volume 221 of Graduate Texts in Mathematics. Springer, New York, Second Edition, 2003. Prepared and with a preface by Volker Kaibel, Victor Klee and Günter M. Ziegler. B. Grünbaum. Convex polytopes, volume 221 of Graduate Texts in Mathematics. Springer, New York, Second Edition, 2003. Prepared and with a preface by Volker Kaibel, Victor Klee and Günter M. Ziegler.
24.
Zurück zum Zitat Q. Han and F. Lin. Elliptic partial differential equations, volume 1 of Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1997. Q. Han and F. Lin. Elliptic partial differential equations, volume 1 of Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1997.
25.
Zurück zum Zitat R. R. Jensen. Uniformly elliptic PDEs with bounded, measurable coefficients. J. Fourier Anal. Appl., 2(3):237–259, 1995.MathSciNetCrossRefMATH R. R. Jensen. Uniformly elliptic PDEs with bounded, measurable coefficients. J. Fourier Anal. Appl., 2(3):237–259, 1995.MathSciNetCrossRefMATH
26.
Zurück zum Zitat M. Jensen and I. Smears. On the convergence of finite element methods for Hamilton-Jacobi-Bellman equations. SIAM J. Numer. Anal., 51(1):137–162, 2013.MathSciNetCrossRefMATH M. Jensen and I. Smears. On the convergence of finite element methods for Hamilton-Jacobi-Bellman equations. SIAM J. Numer. Anal., 51(1):137–162, 2013.MathSciNetCrossRefMATH
27.
Zurück zum Zitat D. Kim. Second order elliptic equations in \({\mathbb{R}}^d\) with piecewise continuous coefficients. Potential Anal., 26:189–212, 2007.MathSciNetCrossRefMATH D. Kim. Second order elliptic equations in \({\mathbb{R}}^d\) with piecewise continuous coefficients. Potential Anal., 26:189–212, 2007.MathSciNetCrossRefMATH
28.
Zurück zum Zitat M. Kocan. Approximation of viscosity solutions of elliptic partial differential equations on minimal grids Numer. Math., 72:73–92, 1995.MathSciNetCrossRefMATH M. Kocan. Approximation of viscosity solutions of elliptic partial differential equations on minimal grids Numer. Math., 72:73–92, 1995.MathSciNetCrossRefMATH
29.
Zurück zum Zitat S. Korotov, M. Křížek, and P. Neittaanmäki. Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle. Math. Comput., 70(233):107–119 (electronic), 2001. S. Korotov, M. Křížek, and P. Neittaanmäki. Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle. Math. Comput., 70(233):107–119 (electronic), 2001.
30.
Zurück zum Zitat N. V. Krylov. On the rate of convergence of finite-difference approximations for Bellman’s equations. Algebra i Analiz, 9:245–256, 1997.MathSciNet N. V. Krylov. On the rate of convergence of finite-difference approximations for Bellman’s equations. Algebra i Analiz, 9:245–256, 1997.MathSciNet
31.
Zurück zum Zitat N. V. Krylov. On the rate of convergence of finite-difference approximations for Bellman’s equations with variable coefficients. Probab. Theory Related Fields, 117:1–16, 2000.MathSciNetCrossRefMATH N. V. Krylov. On the rate of convergence of finite-difference approximations for Bellman’s equations with variable coefficients. Probab. Theory Related Fields, 117:1–16, 2000.MathSciNetCrossRefMATH
32.
Zurück zum Zitat A. Kufner, O. John, and S. Fučík. Function spaces. Noordhoff International Publishing, Leyden; Academia, Prague, 1977. Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis. A. Kufner, O. John, and S. Fučík. Function spaces. Noordhoff International Publishing, Leyden; Academia, Prague, 1977. Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis.
33.
Zurück zum Zitat H. J. Kuo and N. S. Trudinger. Discrete methods for fully nonlinear elliptic equations. SIAM J. Numer. Anal., 29:123–135, 1992.MathSciNetCrossRefMATH H. J. Kuo and N. S. Trudinger. Discrete methods for fully nonlinear elliptic equations. SIAM J. Numer. Anal., 29:123–135, 1992.MathSciNetCrossRefMATH
34.
Zurück zum Zitat H-J. Kuo and N. S. Trudinger. A note on the discrete Aleksandrov-Bakelman maximum principle. In Proceedings of 1999 International Conference on Nonlinear Analysis (Taipei), vol. 4, pp. 55–64, 2000. H-J. Kuo and N. S. Trudinger. A note on the discrete Aleksandrov-Bakelman maximum principle. In Proceedings of 1999 International Conference on Nonlinear Analysis (Taipei), vol. 4, pp. 55–64, 2000.
35.
Zurück zum Zitat H. J. Kushner and P. Dupuis. Numerical methods for stochastic control problems in continuous time, volume 24 of Applications of Mathematics (New York). Springer, New York, Second Edition, 2001. Stochastic Modelling and Applied Probability. H. J. Kushner and P. Dupuis. Numerical methods for stochastic control problems in continuous time, volume 24 of Applications of Mathematics (New York). Springer, New York, Second Edition, 2001. Stochastic Modelling and Applied Probability.
36.
Zurück zum Zitat O. A. Ladyzhenskaya and N. N. Ural’tseva. Linear and quasilinear elliptic equations. Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis. Academic Press, New York-London, 1968. O. A. Ladyzhenskaya and N. N. Ural’tseva. Linear and quasilinear elliptic equations. Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis. Academic Press, New York-London, 1968.
37.
Zurück zum Zitat O. Lakkis and T. Pryer. A finite element method for second order nonvariational elliptic problems. SIAM J. Sci. Comput., 33(2):786–801, 2011.MathSciNetCrossRefMATH O. Lakkis and T. Pryer. A finite element method for second order nonvariational elliptic problems. SIAM J. Sci. Comput., 33(2):786–801, 2011.MathSciNetCrossRefMATH
38.
Zurück zum Zitat A. Lorenzi. On elliptic equations with piecewise constant coefficients, II. Ann. Scuola Norm. Sup. Pisa, 26(3), 839-870, 1972.MathSciNetMATH A. Lorenzi. On elliptic equations with piecewise constant coefficients, II. Ann. Scuola Norm. Sup. Pisa, 26(3), 839-870, 1972.MathSciNetMATH
39.
Zurück zum Zitat A. Maugeri, D. K. Palagachev, and L. G. Softova. Elliptic and parabolic equations with discontinuous coefficients, volume 109 of Mathematical Research. Wiley-VCH Verlag Berlin GmbH, Berlin, 2000. A. Maugeri, D. K. Palagachev, and L. G. Softova. Elliptic and parabolic equations with discontinuous coefficients, volume 109 of Mathematical Research. Wiley-VCH Verlag Berlin GmbH, Berlin, 2000.
40.
Zurück zum Zitat T. S. Motzkin and W. Wasow. On the approximation of linear elliptic differential equations by difference equations with positive coefficients. J. Math. Physics, 31:253–59, 1953.MathSciNetCrossRefMATH T. S. Motzkin and W. Wasow. On the approximation of linear elliptic differential equations by difference equations with positive coefficients. J. Math. Physics, 31:253–59, 1953.MathSciNetCrossRefMATH
41.
Zurück zum Zitat N. Nadirashvili. Nonuniqueness in the martingale problem and the Dirichlet problem for uniformly elliptic operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24(3):537–549, 1997.MathSciNetMATH N. Nadirashvili. Nonuniqueness in the martingale problem and the Dirichlet problem for uniformly elliptic operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24(3):537–549, 1997.MathSciNetMATH
42.
Zurück zum Zitat R. H. Nochetto, M. Paolini, and C. Verdi. An adaptive finite element method for two-phase Stefan problems in two space dimensions. I. Stability and error estimates. Math. Comput., 57(195):73–108, S1–S11, 1991. R. H. Nochetto, M. Paolini, and C. Verdi. An adaptive finite element method for two-phase Stefan problems in two space dimensions. I. Stability and error estimates. Math. Comput., 57(195):73–108, S1–S11, 1991.
43.
Zurück zum Zitat R. H. Nochetto and W. Zhang. Pointwise rates of convergence for the Oliker-Prussner method for the Monge-Ampère equation. (submitted). R. H. Nochetto and W. Zhang. Pointwise rates of convergence for the Oliker-Prussner method for the Monge-Ampère equation. (submitted).
44.
Zurück zum Zitat R. H. Nochetto and W. Zhang. Two-scale FEM for equations in non-divergence form: Calderón-Zygmund theory. (in preparation). R. H. Nochetto and W. Zhang. Two-scale FEM for equations in non-divergence form: Calderón-Zygmund theory. (in preparation).
45.
Zurück zum Zitat M. Safonov. Nonuniqueness for second-order elliptic equations with measurable coefficients. SIAM J. Math. Anal., 30(4):879–895 (electronic), 1999. M. Safonov. Nonuniqueness for second-order elliptic equations with measurable coefficients. SIAM J. Math. Anal., 30(4):879–895 (electronic), 1999.
46.
Zurück zum Zitat A. H. Schatz and L. B. Wahlbin. On the quasi-optimality in \(L_{\infty }\) of the \(\dot{H}^{1}\)-projection into finite element spaces. Math. Comp., 38(157):1–22, 1982.MATH A. H. Schatz and L. B. Wahlbin. On the quasi-optimality in \(L_{\infty }\) of the \(\dot{H}^{1}\)-projection into finite element spaces. Math. Comp., 38(157):1–22, 1982.MATH
47.
Zurück zum Zitat I. Smears and E. Süli. Discontinuous Galerkin finite element approximation of nondivergence form elliptic equations with Cordès coefficients. SIAM J. Numer. Anal., 51(4):2088–2106, 2013.MathSciNetCrossRefMATH I. Smears and E. Süli. Discontinuous Galerkin finite element approximation of nondivergence form elliptic equations with Cordès coefficients. SIAM J. Numer. Anal., 51(4):2088–2106, 2013.MathSciNetCrossRefMATH
48.
Zurück zum Zitat I. Smears and E. Süli. Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordès coefficients. SIAM J. Numer. Anal., 52(2):993–1016, 2014.MathSciNetCrossRefMATH I. Smears and E. Süli. Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordès coefficients. SIAM J. Numer. Anal., 52(2):993–1016, 2014.MathSciNetCrossRefMATH
49.
Zurück zum Zitat A. H. Stroud. Approximate calculation of multiple integrals. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. Prentice-Hall Series in Automatic Computation. A. H. Stroud. Approximate calculation of multiple integrals. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. Prentice-Hall Series in Automatic Computation.
50.
Zurück zum Zitat S. Walker. FELICITY: Finite Element Implementation and Computational Interface Tool for you, Tutorial, 2013. S. Walker. FELICITY: Finite Element Implementation and Computational Interface Tool for you, Tutorial, 2013.
Metadaten
Titel
Discrete ABP Estimate and Convergence Rates for Linear Elliptic Equations in Non-divergence Form
verfasst von
Ricardo H. Nochetto
Wujun Zhang
Publikationsdatum
01.03.2017
Verlag
Springer US
Erschienen in
Foundations of Computational Mathematics / Ausgabe 3/2018
Print ISSN: 1615-3375
Elektronische ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-017-9347-y

Weitere Artikel der Ausgabe 3/2018

Foundations of Computational Mathematics 3/2018 Zur Ausgabe