Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2010

01.12.2010

Disentanglement of local field potential sources by independent component analysis

verfasst von: Valeri A. Makarov, Julia Makarova, Oscar Herreras

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The spontaneous activity of working neurons yields synaptic currents that mix up in the volume conductor. This activity is picked up by intracerebral recording electrodes as local field potentials (LFPs), but their separation into original informative sources is an unresolved problem. Assuming that synaptic currents have stationary placing we implemented independent component model for blind source separation of LFPs in the hippocampal CA1 region. After suppressing contaminating sources from adjacent regions we obtained three main local LFP generators. The specificity of the information contained in isolated generators is much higher than in raw potentials as revealed by stronger phase-spike correlation with local putative interneurons. The spatial distribution of the population synaptic input corresponding to each isolated generator was disclosed by current-source density analysis of spatial weights. The found generators match with axonal terminal fields from subtypes of local interneurons and associational fibers from nearby subfields. The found distributions of synaptic currents were employed in a computational model to reconstruct spontaneous LFPs. The phase-spike correlations of simulated units and LFPs show laminar dependency that reflects the nature and magnitude of the synaptic currents in the targeted pyramidal cells. We propose that each isolated generator captures the synaptic activity driven by a different neuron subpopulation. This offers experimentally justified model of local circuits creating extracellular potential, which involves distinct neuron subtypes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Bédard, C., Kröger, H., & Destexhe, A. (2004). Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophysical Journal, 86(3), 1829–1842.CrossRefPubMed Bédard, C., Kröger, H., & Destexhe, A. (2004). Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophysical Journal, 86(3), 1829–1842.CrossRefPubMed
Zurück zum Zitat Bell, A., & Sejnowski, T. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7, 1129–1159.CrossRefPubMed Bell, A., & Sejnowski, T. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7, 1129–1159.CrossRefPubMed
Zurück zum Zitat Boss, B. D., Turlejski, K., Stanfield, B. B., & Cowan, W. M. (1987). On the numbers of neurons in fields CA1 and CA3 of the hippocampus of Sprague–Dawley and Wistar rats. Brain Research, 406, 280–287.CrossRefPubMed Boss, B. D., Turlejski, K., Stanfield, B. B., & Cowan, W. M. (1987). On the numbers of neurons in fields CA1 and CA3 of the hippocampus of Sprague–Dawley and Wistar rats. Brain Research, 406, 280–287.CrossRefPubMed
Zurück zum Zitat Bragin, A., Jandó, G., Nádasdy, Z., Hetke, J., Wise, K., & Buzsáki, G. G. (1995). Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. Journal of Neuroscience, 15(1), 47–60.PubMed Bragin, A., Jandó, G., Nádasdy, Z., Hetke, J., Wise, K., & Buzsáki, G. G. (1995). Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. Journal of Neuroscience, 15(1), 47–60.PubMed
Zurück zum Zitat Buzsaki, G. G. (1984). Feed forward inhibition in the hippocampal formation. Progress in Neurobiology, 22, 131–153.CrossRefPubMed Buzsaki, G. G. (1984). Feed forward inhibition in the hippocampal formation. Progress in Neurobiology, 22, 131–153.CrossRefPubMed
Zurück zum Zitat Canals, S., López-Aguado, L., & Herreras, O. (2005). Synaptically-recruited apical currents are required to initiate axonal and apical spikes in hippocampal pyramidal cells: modulation by inhibition. Journal of Neurophysiology, 93, 909–918.CrossRefPubMed Canals, S., López-Aguado, L., & Herreras, O. (2005). Synaptically-recruited apical currents are required to initiate axonal and apical spikes in hippocampal pyramidal cells: modulation by inhibition. Journal of Neurophysiology, 93, 909–918.CrossRefPubMed
Zurück zum Zitat Castellanos, N. P., & Makarov, V. A. (2006). Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis. Journal of Neuroscience Methods, 158, 300–312.CrossRefPubMed Castellanos, N. P., & Makarov, V. A. (2006). Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis. Journal of Neuroscience Methods, 158, 300–312.CrossRefPubMed
Zurück zum Zitat Choi, S., Cichocki, A., Park, H. M., & Lee, S. Y. (2005). Blind source separation and independent component analysis: a review. Neural Information Processing - Letters and Reviews, 6, 1–57. Choi, S., Cichocki, A., Park, H. M., & Lee, S. Y. (2005). Blind source separation and independent component analysis: a review. Neural Information Processing - Letters and Reviews, 6, 1–57.
Zurück zum Zitat Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21.CrossRefPubMed Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21.CrossRefPubMed
Zurück zum Zitat Einevoll, G. T., Pettersen, K. H., Devor, A., Ulbert, I., Halgren, E., & Dale, A. M. (2007). Laminar population analysis: estimating firing rates and evoked synaptic activity from multielectrode recordings in rat barrel cortex. Journal of Neurophysiology, 97(3), 2174–2190.CrossRefPubMed Einevoll, G. T., Pettersen, K. H., Devor, A., Ulbert, I., Halgren, E., & Dale, A. M. (2007). Laminar population analysis: estimating firing rates and evoked synaptic activity from multielectrode recordings in rat barrel cortex. Journal of Neurophysiology, 97(3), 2174–2190.CrossRefPubMed
Zurück zum Zitat Fisher, N. I. (1996). Statistical analysis of circular data. Cambridge University Press. Fisher, N. I. (1996). Statistical analysis of circular data. Cambridge University Press.
Zurück zum Zitat Glasgow, S. D., & Chapman, C. A. (2008). Conductances mediating intrinsic theta-frequency membrane potential oscillations in layer II parasubicular neurons. Journal of Neurophysiology, 100(5), 2746–2756.CrossRefPubMed Glasgow, S. D., & Chapman, C. A. (2008). Conductances mediating intrinsic theta-frequency membrane potential oscillations in layer II parasubicular neurons. Journal of Neurophysiology, 100(5), 2746–2756.CrossRefPubMed
Zurück zum Zitat Herreras, O. (1990). Propagating dendritic action potential mediates synaptic transmission in CA1 pyramidal cells in situ. Journal of Neurophysiology, 64, 1429–1441.PubMed Herreras, O. (1990). Propagating dendritic action potential mediates synaptic transmission in CA1 pyramidal cells in situ. Journal of Neurophysiology, 64, 1429–1441.PubMed
Zurück zum Zitat Herreras, O., Solís, J. M., Martín del Río, R., & Lerma, J. (1987). Characteristics of CA1 activation through the hippocampal trisynaptic pathway in the unanaesthetized rat. Brain Research, 413, 75–86.CrossRefPubMed Herreras, O., Solís, J. M., Martín del Río, R., & Lerma, J. (1987). Characteristics of CA1 activation through the hippocampal trisynaptic pathway in the unanaesthetized rat. Brain Research, 413, 75–86.CrossRefPubMed
Zurück zum Zitat Herreras, O., Solís, J. M., Muñoz, M. D., Martín del Río, R., & Lerma, J. (1988). Sensory modulation of hippocampal transmission. I. Opposite effects on CA1 and dentate gyrus synapsis. Brain Research, 451, 290–302.CrossRef Herreras, O., Solís, J. M., Muñoz, M. D., Martín del Río, R., & Lerma, J. (1988). Sensory modulation of hippocampal transmission. I. Opposite effects on CA1 and dentate gyrus synapsis. Brain Research, 451, 290–302.CrossRef
Zurück zum Zitat Hyvärinen, A., & Oja, E. (2000). Independent component analysis: algorithms and applications. Neural Networks, 13(4–5), 411–430.CrossRefPubMed Hyvärinen, A., & Oja, E. (2000). Independent component analysis: algorithms and applications. Neural Networks, 13(4–5), 411–430.CrossRefPubMed
Zurück zum Zitat Ibarz, J. M., Makarova, I., & Herreras, O. (2006). Relation of apical dendritic spikes to output decision in CA1 pyramidal cells during synchronous activation: a computational study. European Journal of Neuroscience, 23, 1219–1233.CrossRefPubMed Ibarz, J. M., Makarova, I., & Herreras, O. (2006). Relation of apical dendritic spikes to output decision in CA1 pyramidal cells during synchronous activation: a computational study. European Journal of Neuroscience, 23, 1219–1233.CrossRefPubMed
Zurück zum Zitat Jung, K. Y., Kim, J. M., Kim, D. W., & Chung, C. S. (2005). Independent component analysis of generalized spike-and-wave discharges: primary versus secondary bilateral synchrony. Clinical Neurophysiology, 116, 913–919.CrossRefPubMed Jung, K. Y., Kim, J. M., Kim, D. W., & Chung, C. S. (2005). Independent component analysis of generalized spike-and-wave discharges: primary versus secondary bilateral synchrony. Clinical Neurophysiology, 116, 913–919.CrossRefPubMed
Zurück zum Zitat Kocsis, B., Bragin, A., & Buzsáki, G. G. (1999). Interdependence of multiple theta generators in the hippocampus: a partial coherence analysis. Journal of Neuroscience, 19(14), 6200–6212.PubMed Kocsis, B., Bragin, A., & Buzsáki, G. G. (1999). Interdependence of multiple theta generators in the hippocampus: a partial coherence analysis. Journal of Neuroscience, 19(14), 6200–6212.PubMed
Zurück zum Zitat Leung, L. S., Roth, L., & Canning, K. J. (1995). Entorhinal inputs to hippocampal CA1 and dentate gyrus in the rat: a current-source-density study. Journal of Neurophysiology, 73(6), 2392–2403.PubMed Leung, L. S., Roth, L., & Canning, K. J. (1995). Entorhinal inputs to hippocampal CA1 and dentate gyrus in the rat: a current-source-density study. Journal of Neurophysiology, 73(6), 2392–2403.PubMed
Zurück zum Zitat López-Aguado, L., Ibarz, J. M., & Herreras, O. (2001). Activity-dependent changes of tissue resistivity in the CA1 region in vivo are layer-specific: modulation of evoked potentials. Neuroscience, 108(2), 249–262.CrossRefPubMed López-Aguado, L., Ibarz, J. M., & Herreras, O. (2001). Activity-dependent changes of tissue resistivity in the CA1 region in vivo are layer-specific: modulation of evoked potentials. Neuroscience, 108(2), 249–262.CrossRefPubMed
Zurück zum Zitat Lorente de Nó, R. (1934). Studies of the structure of the cerebral cortex. II. Continuation of the study of the ammonic system. Journal of Psychology and Neurology, 46, 113–177. Lorente de Nó, R. (1934). Studies of the structure of the cerebral cortex. II. Continuation of the study of the ammonic system. Journal of Psychology and Neurology, 46, 113–177.
Zurück zum Zitat Makarova, I., Gómez-Galán, M., & Herreras, O. (2008). Layer specific changes in tissue resistivity and spatial cancellation of transmembrane currents shape the voltage signal during spreading depression in the CA1 in vivo. European Journal of Neuroscience, 27, 444–456.CrossRefPubMed Makarova, I., Gómez-Galán, M., & Herreras, O. (2008). Layer specific changes in tissue resistivity and spatial cancellation of transmembrane currents shape the voltage signal during spreading depression in the CA1 in vivo. European Journal of Neuroscience, 27, 444–456.CrossRefPubMed
Zurück zum Zitat Makarova, J., Makarov, V. A., & Herreras, O. (2010). A model of sustained field potentials based on polarization gradients within single neurons. (to appear in the Journal of Neurophysiology). Makarova, J., Makarov, V. A., & Herreras, O. (2010). A model of sustained field potentials based on polarization gradients within single neurons. (to appear in the Journal of Neurophysiology).
Zurück zum Zitat Makeig, S., Debener, S., Onton, J., & Delorme, A. (2004). Mining event-related brain dynamics. Trends in Cognitive Science, 8, 204–210.CrossRef Makeig, S., Debener, S., Onton, J., & Delorme, A. (2004). Mining event-related brain dynamics. Trends in Cognitive Science, 8, 204–210.CrossRef
Zurück zum Zitat Mitzdorf, U. (1985). Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiological Reviews, 65, 37–100.PubMed Mitzdorf, U. (1985). Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiological Reviews, 65, 37–100.PubMed
Zurück zum Zitat Montgomery, S. M., Betancur, M. I., & Buzsáki, G. G. (2009). Behavior-dependent coordination of multiple theta dipoles in the hippocampus. Journal of Neuroscience, 29, 1381–1394.CrossRefPubMed Montgomery, S. M., Betancur, M. I., & Buzsáki, G. G. (2009). Behavior-dependent coordination of multiple theta dipoles in the hippocampus. Journal of Neuroscience, 29, 1381–1394.CrossRefPubMed
Zurück zum Zitat Mouraux, A., & Iannetti, G. D. (2008). Across-trial averaging of event-related EEG responses and beyond. Magnetic Resonance Imaging, 26(7), 1041–1054.CrossRefPubMed Mouraux, A., & Iannetti, G. D. (2008). Across-trial averaging of event-related EEG responses and beyond. Magnetic Resonance Imaging, 26(7), 1041–1054.CrossRefPubMed
Zurück zum Zitat Murakami, S., Hirose, A., & Okada, Y. C. (2003). Contribution of ionic currents to magnetoencephalography (MEG) and electroencephalography (EEG) signals generated by guinea-pig CA3 slices. Journal of Physiology, 553(3), 975–985.CrossRefPubMed Murakami, S., Hirose, A., & Okada, Y. C. (2003). Contribution of ionic currents to magnetoencephalography (MEG) and electroencephalography (EEG) signals generated by guinea-pig CA3 slices. Journal of Physiology, 553(3), 975–985.CrossRefPubMed
Zurück zum Zitat Nicholson, C., & Freeman, J. A. (1975). Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. Journal of Neurophysiology, 38(2), 356–368.PubMed Nicholson, C., & Freeman, J. A. (1975). Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. Journal of Neurophysiology, 38(2), 356–368.PubMed
Zurück zum Zitat Nunez, P. L., & Srinivasan, R. (2006). Electric fields of the brain: the neurophysics of EEG. 2. New York: Oxford University Press. Nunez, P. L., & Srinivasan, R. (2006). Electric fields of the brain: the neurophysics of EEG. 2. New York: Oxford University Press.
Zurück zum Zitat Pavlov, A., Makarov, V. A., Makarova, J., & Panetsos, F. (2007). Sorting of neural spikes: when wavelet based methods outperform principal component analysis. Natural Computing, 6, 269–281.CrossRef Pavlov, A., Makarov, V. A., Makarova, J., & Panetsos, F. (2007). Sorting of neural spikes: when wavelet based methods outperform principal component analysis. Natural Computing, 6, 269–281.CrossRef
Zurück zum Zitat Pettersen, K. H., & Einevoll, G. T. (2008). Amplitude variability and extracellular low-pass filtering of neuronal spikes. Biophysical Journal, 94, 784–802.CrossRefPubMed Pettersen, K. H., & Einevoll, G. T. (2008). Amplitude variability and extracellular low-pass filtering of neuronal spikes. Biophysical Journal, 94, 784–802.CrossRefPubMed
Zurück zum Zitat Ranck, J. B., Jr. (1973). Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. I. Behavioral correlates and firing repertoires. Experimental Neurology, 41(2), 461–531.PubMed Ranck, J. B., Jr. (1973). Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. I. Behavioral correlates and firing repertoires. Experimental Neurology, 41(2), 461–531.PubMed
Zurück zum Zitat Rudolph, M., Pelletier, J. G., Paré, D., & Destexhe, A. (2005). Characterization of synaptic conductances and integrative properties during electrically induced EEG-activated states in neocortical neurons in vivo. Journal of Neurophysiology, 94, 2805–2821.CrossRefPubMed Rudolph, M., Pelletier, J. G., Paré, D., & Destexhe, A. (2005). Characterization of synaptic conductances and integrative properties during electrically induced EEG-activated states in neocortical neurons in vivo. Journal of Neurophysiology, 94, 2805–2821.CrossRefPubMed
Zurück zum Zitat Somogyi, P., & Klausberger, T. (2005). Defined types of cortical interneurone structure space and spike timing in the hippocampus. Journal of Physiology, 562, 9–26.CrossRefPubMed Somogyi, P., & Klausberger, T. (2005). Defined types of cortical interneurone structure space and spike timing in the hippocampus. Journal of Physiology, 562, 9–26.CrossRefPubMed
Zurück zum Zitat Spruston, N., & Johnston, D. (1992). Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. Journal of Neurophysiology, 67, 508–529.PubMed Spruston, N., & Johnston, D. (1992). Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. Journal of Neurophysiology, 67, 508–529.PubMed
Zurück zum Zitat Tanskanen, J. M., Mikkonen, J. E., & Penttonen, M. (2005). Independent component analysis of neural populations from multielectrode field potential measurements. Journal of Neuroscience Methods, 145(1–2), 213–232.CrossRefPubMed Tanskanen, J. M., Mikkonen, J. E., & Penttonen, M. (2005). Independent component analysis of neural populations from multielectrode field potential measurements. Journal of Neuroscience Methods, 145(1–2), 213–232.CrossRefPubMed
Zurück zum Zitat Varona, P., Ibarz, J. M., López-Aguado, L., & Herreras, O. (2000). Macroscopic and subcellular factors shaping CA1 population spikes. Journal of Neurophysiology, 83, 2192–2208.PubMed Varona, P., Ibarz, J. M., López-Aguado, L., & Herreras, O. (2000). Macroscopic and subcellular factors shaping CA1 population spikes. Journal of Neurophysiology, 83, 2192–2208.PubMed
Metadaten
Titel
Disentanglement of local field potential sources by independent component analysis
verfasst von
Valeri A. Makarov
Julia Makarova
Oscar Herreras
Publikationsdatum
01.12.2010
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2010
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-009-0206-y

Weitere Artikel der Ausgabe 3/2010

Journal of Computational Neuroscience 3/2010 Zur Ausgabe

Premium Partner