Skip to main content
Erschienen in: Mobile Networks and Applications 3/2022

29.11.2018

Distributed Deep Learning-based Offloading for Mobile Edge Computing Networks

verfasst von: Liang Huang, Xu Feng, Anqi Feng, Yupin Huang, Li Ping Qian

Erschienen in: Mobile Networks and Applications | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper studies mobile edge computing (MEC) networks where multiple wireless devices (WDs) choose to offload their computation tasks to an edge server. To conserve energy and maintain quality of service for WDs, the optimization of joint offloading decision and bandwidth allocation is formulated as a mixed integer programming problem. However, the problem is computationally limited by the curse of dimensionality, which cannot be solved by general optimization tools in an effective and efficient way, especially for large-scale WDs. In this paper, we propose a distributed deep learning-based offloading (DDLO) algorithm for MEC networks, where multiple parallel DNNs are used to generate offloading decisions. We adopt a shared replay memory to store newly generated offloading decisions which are further to train and improve all DNNs. Extensive numerical results show that the proposed DDLO algorithm can generate near-optimal offloading decisions in less than one second.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Fußnoten
1
The source code of scipy is available at https://​www.​scipy.​org.
 
Literatur
1.
Zurück zum Zitat Chiang M, Zhang T (2016) Fog and IoT: an overview of research opportunities. IEEE Internet J 3(6):854–864CrossRef Chiang M, Zhang T (2016) Fog and IoT: an overview of research opportunities. IEEE Internet J 3(6):854–864CrossRef
2.
Zurück zum Zitat Mao Y, You C, Zhang J, Huang K, Letaief K (2017) A survey on mobile edge computing: the communication perspective. IEEE Commun Surv Tutorials 19(4):2322–2358CrossRef Mao Y, You C, Zhang J, Huang K, Letaief K (2017) A survey on mobile edge computing: the communication perspective. IEEE Commun Surv Tutorials 19(4):2322–2358CrossRef
3.
Zurück zum Zitat Abbas N, Zhang Y, Taherkordi A, Skeie T (2018) Mobile edge computing: a survey. IEEE Internet J 5(1):450–465CrossRef Abbas N, Zhang Y, Taherkordi A, Skeie T (2018) Mobile edge computing: a survey. IEEE Internet J 5(1):450–465CrossRef
4.
Zurück zum Zitat Chen X, Jiao L, Li W, Fu X (2016) Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans Netw 24(5):2795–2808CrossRef Chen X, Jiao L, Li W, Fu X (2016) Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans Netw 24(5):2795–2808CrossRef
5.
Zurück zum Zitat Tran TX, Pompili D (2017) Joint task offloading and resource allocation for multi-server mobile-edge computing networks. arXiv:1705.00704 Tran TX, Pompili D (2017) Joint task offloading and resource allocation for multi-server mobile-edge computing networks. arXiv:1705.​00704
6.
Zurück zum Zitat Bi S, Zhang Y (2018) Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading. IEEE Trans Wirel Commun 17(6):4177–4190CrossRef Bi S, Zhang Y (2018) Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading. IEEE Trans Wirel Commun 17(6):4177–4190CrossRef
7.
Zurück zum Zitat Guo S, Xiao B, Yang Y, Yang Y (2016) Energy-efficient dynamic offloading and resource scheduling in mobile cloud computing. In: IEEE international conference on computer communications, pp 1–9 Guo S, Xiao B, Yang Y, Yang Y (2016) Energy-efficient dynamic offloading and resource scheduling in mobile cloud computing. In: IEEE international conference on computer communications, pp 1–9
8.
Zurück zum Zitat Zhang J, Xia W, Zhang Y, Zou Q, Huang B, Yan F, Shen L (2017) Joint offloading and resource allocation optimization for mobile edge computing. In: IEEE global communications conference, pp 1–6 Zhang J, Xia W, Zhang Y, Zou Q, Huang B, Yan F, Shen L (2017) Joint offloading and resource allocation optimization for mobile edge computing. In: IEEE global communications conference, pp 1–6
9.
Zurück zum Zitat Chen M, Liang B, Dong M (2016) Joint offloading decision and bandwidth allocation for multi-user multi-task mobile edge. In: 2016 IEEE international conference on communications, Kuala Lumpur, pp 1–6 Chen M, Liang B, Dong M (2016) Joint offloading decision and bandwidth allocation for multi-user multi-task mobile edge. In: 2016 IEEE international conference on communications, Kuala Lumpur, pp 1–6
10.
Zurück zum Zitat Qian LP, Zhang Y, Huang H, Wu Y (2013) Demand response management via real-time electricity price control in smart grids. IEEE J Sel Areas Commun 31(7):1268–1280CrossRef Qian LP, Zhang Y, Huang H, Wu Y (2013) Demand response management via real-time electricity price control in smart grids. IEEE J Sel Areas Commun 31(7):1268–1280CrossRef
11.
Zurück zum Zitat Qian LP, Wu Y, Zhou H, Shen XS (2017) Joint uplink base station association and power control for small-cell networks with non-orthogonal multiple access. IEEE Trans Wirel Commun 16(9):5567–5582CrossRef Qian LP, Wu Y, Zhou H, Shen XS (2017) Joint uplink base station association and power control for small-cell networks with non-orthogonal multiple access. IEEE Trans Wirel Commun 16(9):5567–5582CrossRef
12.
Zurück zum Zitat Qian LP, Wu Y, Zhou H, Shen XS (2017) Dynamic cell association for non-orthogonal multiple-access V2S networks. IEEE J Sel Areas Commun 35(10):2342–2356CrossRef Qian LP, Wu Y, Zhou H, Shen XS (2017) Dynamic cell association for non-orthogonal multiple-access V2S networks. IEEE J Sel Areas Commun 35(10):2342–2356CrossRef
13.
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436CrossRef LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436CrossRef
14.
Zurück zum Zitat Phaniteja S, Dewangan P, Guhan P, Sarkar A, Krishna K (2017) A deep reinforcement learning approach for dynamically stable inverse kinematics of humanoid robots. In: 2017 IEEE international conference on robotics and biomimetics (ROBIO), Macau, pp 1818–1823 Phaniteja S, Dewangan P, Guhan P, Sarkar A, Krishna K (2017) A deep reinforcement learning approach for dynamically stable inverse kinematics of humanoid robots. In: 2017 IEEE international conference on robotics and biomimetics (ROBIO), Macau, pp 1818–1823
15.
Zurück zum Zitat Sharma A, Kaushik P (2017) Literature survey of statistical, deep and reinforcement learning in natural language processing. In: International conference on computing, communication and automation, Greater Noida, pp 350–354 Sharma A, Kaushik P (2017) Literature survey of statistical, deep and reinforcement learning in natural language processing. In: International conference on computing, communication and automation, Greater Noida, pp 350–354
16.
Zurück zum Zitat Mnih V, Kavukcuoglu K, et al. (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529–533CrossRef Mnih V, Kavukcuoglu K, et al. (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529–533CrossRef
17.
Zurück zum Zitat Dulac-Arnold G, Evans R, Hasselt H, Sunehag P, Lillicrap T, Hunt J, Mann T, Weber T, Degris T, Coppin B (2015) Deep reinforcement learning in large discrete action spaces. arXiv:1512.07679 Dulac-Arnold G, Evans R, Hasselt H, Sunehag P, Lillicrap T, Hunt J, Mann T, Weber T, Degris T, Coppin B (2015) Deep reinforcement learning in large discrete action spaces. arXiv:1512.​07679
18.
Zurück zum Zitat Zhang C, Patras P, Haddadi H (2018) Deep learning in mobile and wireless networking: a survey. arXiv:1803.04311 Zhang C, Patras P, Haddadi H (2018) Deep learning in mobile and wireless networking: a survey. arXiv:1803.​04311
19.
Zurück zum Zitat Sun H, Chen X, Shi Q, Hong M, Fu X, Sidiropoulos ND (2017) Learning to optimize: Training deep neural networks for wireless resource management. In: Proceedings of IEEE international workshop on signal processing advances in wireless communications, pp 1–6 Sun H, Chen X, Shi Q, Hong M, Fu X, Sidiropoulos ND (2017) Learning to optimize: Training deep neural networks for wireless resource management. In: Proceedings of IEEE international workshop on signal processing advances in wireless communications, pp 1–6
20.
Zurück zum Zitat Xu Z, Wang Y, Tang J, Wang J, Gursoy MC (2017) A deep reinforcement learning based framework for power-efficient resource allocation in edge RANs. In: Proceedings of IEEE international conference on communications, pp 1–6 Xu Z, Wang Y, Tang J, Wang J, Gursoy MC (2017) A deep reinforcement learning based framework for power-efficient resource allocation in edge RANs. In: Proceedings of IEEE international conference on communications, pp 1–6
21.
Zurück zum Zitat Samuel N, Diskin T, Wiesel A (2017) Deep MIMO detection. In: IEEE 18th Int. Workshop Signal Process. Adv. Wireless Commun., pp. 690–694 Samuel N, Diskin T, Wiesel A (2017) Deep MIMO detection. In: IEEE 18th Int. Workshop Signal Process. Adv. Wireless Commun., pp. 690–694
22.
Zurück zum Zitat Ye H, Li GY, Juang BH (2018) Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wireless Commun Lett 7(1):114–117CrossRef Ye H, Li GY, Juang BH (2018) Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wireless Commun Lett 7(1):114–117CrossRef
23.
Zurück zum Zitat He Y, Zhang Z, Yu FR, Zhao N, Yin H, Leung VC, Zhang Y (2017) Deep-reinforcement-learning-based optimization for cache-enabled opportunistic interference alignment wireless networks. IEEE Trans Veh Technol 66 (11):10433–10445CrossRef He Y, Zhang Z, Yu FR, Zhao N, Yin H, Leung VC, Zhang Y (2017) Deep-reinforcement-learning-based optimization for cache-enabled opportunistic interference alignment wireless networks. IEEE Trans Veh Technol 66 (11):10433–10445CrossRef
24.
Zurück zum Zitat Zhong C, Gursoy MC, Velipasalar S (2018) A deep reinforcement learning-based framework for content caching. In: IEEE 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–6 Zhong C, Gursoy MC, Velipasalar S (2018) A deep reinforcement learning-based framework for content caching. In: IEEE 52nd Annual Conference on Information Sciences and Systems (CISS), pp. 1–6
25.
Zurück zum Zitat He Y, Yu FR, Zhao N, Leung VC, Yin H (2017) Software-defined networks with mobile edge computing and caching for smart cities: a big data deep reinforcement learning approach. IEEE Commun Mag 55(12):31–37CrossRef He Y, Yu FR, Zhao N, Leung VC, Yin H (2017) Software-defined networks with mobile edge computing and caching for smart cities: a big data deep reinforcement learning approach. IEEE Commun Mag 55(12):31–37CrossRef
26.
Zurück zum Zitat Min M, Xu D, Xiao L, Tang Y, Wu D (2017) Learning-based computation offloading for IoT devices with energy harvesting. arXiv:1712.08768 Min M, Xu D, Xiao L, Tang Y, Wu D (2017) Learning-based computation offloading for IoT devices with energy harvesting. arXiv:1712.​08768
27.
Zurück zum Zitat Chen X, Zhang H, Wu C, Mao S, Ji Y, Bennis M (2018) Performance optimization in mobile-edge computing via deep reinforcement learning. arXiv:1804.00514 Chen X, Zhang H, Wu C, Mao S, Ji Y, Bennis M (2018) Performance optimization in mobile-edge computing via deep reinforcement learning. arXiv:1804.​00514
28.
Zurück zum Zitat Huang L, Feng X, Qian LP, Wu Y (2018) Deep reinforcement learning-based task offloading and resource allocation for mobile edge computing. In: 3rd EAI International Conference on Machine Learning and Intelligent Communications, pp 1–10 Huang L, Feng X, Qian LP, Wu Y (2018) Deep reinforcement learning-based task offloading and resource allocation for mobile edge computing. In: 3rd EAI International Conference on Machine Learning and Intelligent Communications, pp 1–10
29.
Zurück zum Zitat Huang L, Bi S, Qian LP, Xia Z (2018) Adaptive scheduling in energy harvesting sensor networks for green cities. IEEE Trans Ind Inf 14(4):1575–1584CrossRef Huang L, Bi S, Qian LP, Xia Z (2018) Adaptive scheduling in energy harvesting sensor networks for green cities. IEEE Trans Ind Inf 14(4):1575–1584CrossRef
30.
Zurück zum Zitat You C, Huang K, Chae H, Kim B (2017) Energy-Efficient Resource Allocation for Mobile-Edge Computation Offloading. IEEE Trans Wirel Commun 16(3):1397–1411CrossRef You C, Huang K, Chae H, Kim B (2017) Energy-Efficient Resource Allocation for Mobile-Edge Computation Offloading. IEEE Trans Wirel Commun 16(3):1397–1411CrossRef
31.
Zurück zum Zitat Zhang H, Liu H, Cheng J, Leung MCV (2018) Downlink Energy Efficiency of Power Allocation and Wireless Backhaul Bandwidth Allocation in Heterogeneous Small Cell Networks. IEEE Trans Commun 66(4):1705–1716CrossRef Zhang H, Liu H, Cheng J, Leung MCV (2018) Downlink Energy Efficiency of Power Allocation and Wireless Backhaul Bandwidth Allocation in Heterogeneous Small Cell Networks. IEEE Trans Commun 66(4):1705–1716CrossRef
32.
Zurück zum Zitat Lin LJ (1993) Reinforcement learning for robots using neural networks, Carnegie-Mellon Univ Pittsburgh PA School of Computer Science, Technical Report Lin LJ (1993) Reinforcement learning for robots using neural networks, Carnegie-Mellon Univ Pittsburgh PA School of Computer Science, Technical Report
33.
Zurück zum Zitat Horgan D, Quan J, Budden D, Barth-Maron G, Hessel M, van Hasselt H, Silver D (2018) Distributed prioritized experience replay. arXiv:1803.00933 Horgan D, Quan J, Budden D, Barth-Maron G, Hessel M, van Hasselt H, Silver D (2018) Distributed prioritized experience replay. arXiv:1803.​00933
34.
Zurück zum Zitat Loshchilov I, Hutter F (2015) Online batch selection for faster training of neural networks. arXiv:1511.06343 Loshchilov I, Hutter F (2015) Online batch selection for faster training of neural networks. arXiv:1511.​06343
35.
Zurück zum Zitat Alain G, Lamb A, Sankar C, Courville A, Bengio Y (2015) Variance reduction in SGD by distributed importance sampling. arXiv:1511.06481 Alain G, Lamb A, Sankar C, Courville A, Bengio Y (2015) Variance reduction in SGD by distributed importance sampling. arXiv:1511.​06481
36.
Zurück zum Zitat Schaul T, Quan J, Antonoglou I, Silver D (2016) Prioritized experience replay. In International conference on learning representations (ICLR) Schaul T, Quan J, Antonoglou I, Silver D (2016) Prioritized experience replay. In International conference on learning representations (ICLR)
37.
Zurück zum Zitat Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S (2016) Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv:1603.04467 Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S (2016) Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv:1603.​04467
Metadaten
Titel
Distributed Deep Learning-based Offloading for Mobile Edge Computing Networks
verfasst von
Liang Huang
Xu Feng
Anqi Feng
Yupin Huang
Li Ping Qian
Publikationsdatum
29.11.2018
Verlag
Springer US
Erschienen in
Mobile Networks and Applications / Ausgabe 3/2022
Print ISSN: 1383-469X
Elektronische ISSN: 1572-8153
DOI
https://doi.org/10.1007/s11036-018-1177-x

Weitere Artikel der Ausgabe 3/2022

Mobile Networks and Applications 3/2022 Zur Ausgabe

Neuer Inhalt