Skip to main content

2019 | OriginalPaper | Buchkapitel

Distributional Collision Resistance Beyond One-Way Functions

verfasst von : Nir Bitansky, Iftach Haitner, Ilan Komargodski, Eylon Yogev

Erschienen in: Advances in Cryptology – EUROCRYPT 2019

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Distributional collision resistance is a relaxation of collision resistance that only requires that it is hard to sample a collision (xy) where x is uniformly random and y is uniformly random conditioned on colliding with x. The notion lies between one-wayness and collision resistance, but its exact power is still not well-understood. On one hand, distributional collision resistant hash functions cannot be built from one-way functions in a black-box way, which may suggest that they are stronger. On the other hand, so far, they have not yielded any applications beyond one-way functions.
Assuming distributional collision resistant hash functions, we construct constant-round statistically hiding commitment scheme. Such commitments are not known based on one-way functions, and are impossible to obtain from one-way functions in a black-box way. Our construction relies on the reduction from inaccessible entropy generators to statistically hiding commitments by Haitner et al. (STOC ’09). In the converse direction, we show that two-message statistically hiding commitments imply distributional collision resistance, thereby establishing a loose equivalence between the two notions.
A corollary of the first result is that constant-round statistically hiding commitments are implied by average-case hardness in the class \({\textsf {SZK}}\) (which is known to imply distributional collision resistance). This implication seems to be folklore, but to the best of our knowledge has not been proven explicitly. We provide yet another proof of this implication, which is arguably more direct than the one going through distributional collision resistance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
There are some subtleties in defining this precisely. The definition we use differs from previous ones [9, 21, 26]. We elaborate on the exact definition and the difference in the technical overview below and in Sect. 3.4.
 
2
Multi-collision resistance is another relaxation of collision resistance, where it is only hard to find multiple elements that all map to the same image. Multi-collision resistance does not imply dCRH in a black-box way [25], but Komargodski and Yogev [26] give a non-black-box construction.
 
3
The previous definition is known to imply a weaker notion of distributional one-way functions (with a different polynomial bound per each adversary) [21], which is not known to imply one-way functions.
 
4
In particular, this is the case when there is no public parameter, i.e., \(c= 0\).
 
Literatur
1.
Zurück zum Zitat Applebaum, B., Haramaty, N., Ishai, Y., Kushilevitz, E., Vaikuntanathan, V.: Low-complexity cryptographic hash functions. In: 8th Innovations in Theoretical Computer Science Conference, ITCS, pp. 7:1–7:31 (2017) Applebaum, B., Haramaty, N., Ishai, Y., Kushilevitz, E., Vaikuntanathan, V.: Low-complexity cryptographic hash functions. In: 8th Innovations in Theoretical Computer Science Conference, ITCS, pp. 7:1–7:31 (2017)
2.
Zurück zum Zitat Asharov, G., Segev, G.: Limits on the power of indistinguishability obfuscation and functional encryption. SIAM J. Comput. 45(6), 2117–2176 (2016)MathSciNetCrossRef Asharov, G., Segev, G.: Limits on the power of indistinguishability obfuscation and functional encryption. SIAM J. Comput. 45(6), 2117–2176 (2016)MathSciNetCrossRef
3.
Zurück zum Zitat Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd IEEE Annual Symposium on Foundations of Computer Science, FOCS, pp. 106–115 (2001) Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd IEEE Annual Symposium on Foundations of Computer Science, FOCS, pp. 106–115 (2001)
6.
Zurück zum Zitat Bitansky, N., Kalai, Y.T., Paneth, O.: Multi-collision resistance: a paradigm for keyless hash functions. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC, pp. 671–684 (2018) Bitansky, N., Kalai, Y.T., Paneth, O.: Multi-collision resistance: a paradigm for keyless hash functions. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC, pp. 671–684 (2018)
7.
Zurück zum Zitat Blum, M.: Coin flipping by telephone. In: Advances in Cryptology - CRYPTO, pp. 11–15 (1981) Blum, M.: Coin flipping by telephone. In: Advances in Cryptology - CRYPTO, pp. 11–15 (1981)
9.
Zurück zum Zitat Dubrov, B., Ishai, Y.: On the randomness complexity of efficient sampling. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 711–720 (2006) Dubrov, B., Ishai, Y.: On the randomness complexity of efficient sampling. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 711–720 (2006)
10.
Zurück zum Zitat Dvir, Z., Gutfreund, D., Rothblum, G.N., Vadhan, S.P.: On approximating the entropy of polynomial mappings. In: Innovations in Computer Science - ICS, pp. 460–475 (2011) Dvir, Z., Gutfreund, D., Rothblum, G.N., Vadhan, S.P.: On approximating the entropy of polynomial mappings. In: Innovations in Computer Science - ICS, pp. 460–475 (2011)
11.
Zurück zum Zitat Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, STOC, pp. 416–426 (1990) Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, STOC, pp. 416–426 (1990)
12.
Zurück zum Zitat Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof systems for NP. J. Cryptology 9(3), 167–190 (1996)MathSciNetCrossRef Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof systems for NP. J. Cryptology 9(3), 167–190 (1996)MathSciNetCrossRef
13.
Zurück zum Zitat Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing, STOC, pp. 218–229 (1987) Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing, STOC, pp. 218–229 (1987)
14.
Zurück zum Zitat Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)MathSciNetCrossRef Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)MathSciNetCrossRef
15.
Zurück zum Zitat Haitner, I., Hoch, J.J., Reingold, O., Segev, G.: Finding collisions in interactive protocols - tight lower bounds on the round and communication complexities of statistically hiding commitments. SIAM J. Comput. 44(1), 193–242 (2015)MathSciNetCrossRef Haitner, I., Hoch, J.J., Reingold, O., Segev, G.: Finding collisions in interactive protocols - tight lower bounds on the round and communication complexities of statistically hiding commitments. SIAM J. Comput. 44(1), 193–242 (2015)MathSciNetCrossRef
16.
Zurück zum Zitat Haitner, I., Nguyen, M., Ong, S.J., Reingold, O., Vadhan, S.P.: Statistically hiding commitments and statistical zero-knowledge arguments from any one-way function. SIAM J. Comput. 39(3), 1153–1218 (2009)MathSciNetCrossRef Haitner, I., Nguyen, M., Ong, S.J., Reingold, O., Vadhan, S.P.: Statistically hiding commitments and statistical zero-knowledge arguments from any one-way function. SIAM J. Comput. 39(3), 1153–1218 (2009)MathSciNetCrossRef
18.
Zurück zum Zitat Haitner, I., Reingold, O., Vadhan, S.P., Wee, H.: Inaccessible entropy. In: Mitzenmacher, M. (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC, pp. 611–620 (2009) Haitner, I., Reingold, O., Vadhan, S.P., Wee, H.: Inaccessible entropy. In: Mitzenmacher, M. (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC, pp. 611–620 (2009)
21.
Zurück zum Zitat Harnik, D., Naor, M.: On the compressibility of NP instances and cryptographic applications. SIAM J. Comput. 39(5), 1667–1713 (2010)MathSciNetCrossRef Harnik, D., Naor, M.: On the compressibility of NP instances and cryptographic applications. SIAM J. Comput. 39(5), 1667–1713 (2010)MathSciNetCrossRef
22.
Zurück zum Zitat Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)MathSciNetCrossRef Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)MathSciNetCrossRef
23.
Zurück zum Zitat Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based cryptography (extended abstract). In: 30th IEEE Annual Symposium on Foundations of Computer Science, FOCS, pp. 230–235 (1989) Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based cryptography (extended abstract). In: 30th IEEE Annual Symposium on Foundations of Computer Science, FOCS, pp. 230–235 (1989)
24.
Zurück zum Zitat Komargodski, I., Naor, M., Yogev, E.: White-box vs. black-box complexity of search problems: Ramsey and graph property testing. In: 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS, pp. 622–632 (2017) Komargodski, I., Naor, M., Yogev, E.: White-box vs. black-box complexity of search problems: Ramsey and graph property testing. In: 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS, pp. 622–632 (2017)
28.
Zurück zum Zitat Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2), 151–158 (1991)CrossRef Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2), 151–158 (1991)CrossRef
30.
Zurück zum Zitat Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pp. 33–43. ACM (1989) Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pp. 33–43. ACM (1989)
32.
Zurück zum Zitat Ostrovsky, R., Wigderson, A.: One-way functions are essential for non-trivial zero-knowledge. In: Second Israel Symposium on Theory of Computing Systems, ISTCS, pp. 3–17. IEEE Computer Society (1993) Ostrovsky, R., Wigderson, A.: One-way functions are essential for non-trivial zero-knowledge. In: Second Israel Symposium on Theory of Computing Systems, ISTCS, pp. 3–17. IEEE Computer Society (1993)
Metadaten
Titel
Distributional Collision Resistance Beyond One-Way Functions
verfasst von
Nir Bitansky
Iftach Haitner
Ilan Komargodski
Eylon Yogev
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-17659-4_23

Premium Partner