Skip to main content

2019 | OriginalPaper | Buchkapitel

New Techniques for Obfuscating Conjunctions

verfasst von : James Bartusek, Tancrède Lepoint, Fermi Ma, Mark Zhandry

Erschienen in: Advances in Cryptology – EUROCRYPT 2019

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A conjunction is a function \(f(x_1,\dots ,x_n) = \bigwedge _{i \in S} l_i\) where \(S \subseteq [n]\) and each \(l_i\) is \(x_i\) or \(\lnot x_i\). Bishop et al. (CRYPTO 2018) recently proposed obfuscating conjunctions by embedding them in the error positions of a noisy Reed-Solomon codeword and placing the codeword in a group exponent. They prove distributional virtual black box (VBB) security in the generic group model for random conjunctions where \(|S| \ge 0.226n\). While conjunction obfuscation is known from LWE [31, 47], these constructions rely on substantial technical machinery.
In this work, we conduct an extensive study of simple conjunction obfuscation techniques.
  • We abstract the Bishop et al. scheme to obtain an equivalent yet more efficient “dual” scheme that can handle conjunctions over exponential size alphabets. This scheme admits a straightforward proof of generic group security, which we combine with a novel combinatorial argument to obtain distributional VBB security for |S| of any size.
  • If we replace the Reed-Solomon code with a random binary linear code, we can prove security from standard LPN and avoid encoding in a group. This addresses an open problem posed by Bishop et al. to prove security of this simple approach in the standard model.
  • We give a new construction that achieves information theoretic distributional VBB security and weak functionality preservation for \(|S| \ge n - n^\delta \) and \(\delta < 1\). Assuming discrete log and \(\delta < 1/2\), we satisfy a stronger notion of functionality preservation for computationally bounded adversaries while still achieving information theoretic security.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Conjunctions over boolean/binary inputs naturally generalize to alphabets \([\ell ]\) for \(\ell \ge 2\). In this setting, each \(x_i \in [\ell ]\), and \(\ell _i\) specifies the setting on the ith character. Positions not fixed by the \(\ell _i\) are the wildcards.
 
2
If \(w = n - O(\log n)\), the distributional virtual black box security notion is vacuous since an attacker can guess an accepting input and recover \(\mathsf {pat}\) entirely.
 
3
We note that if we set \(\ell = 2\), this generalization flips the role of 0 and 1, but is functionally equivalent.
 
4
In the context of LWE this duality/transformation has been observed a number of times, see e.g. [40]. For RLC, this is essentially syndrome decoding.
 
5
This holds for our generic group model constructions as well.
 
6
RLC for field size \(q = 2\) is equivalent to LPN.
 
7
To the best of our knowledge, this scheme had not appeared in the literature before [12]. However, most prior work on point obfuscation considers stronger correctness, security, and functionality requirements (such as multi-bit output) that this scheme falls short of, which may preclude its use in certain settings.
 
8
This is slightly informal, since it requires a notion of input-hiding obfuscation [6].
 
9
This was re-named to “perfectly one-way functions” in [22].
 
10
See the full version [9] for a description of how to do this in \(O(n\log ^2(n))\) time.
 
11
As noted in [12], we can boost this to strong functionality preservation by setting \(q > 2^{2n}\).
 
12
Consider for example the distributional point obfuscator that simply outputs the single accepting point in the clear as the “obfuscation.” To evaluate, we simply compare the input point with the accepting point. Notice this trivially insecure obfuscation is perfectly indistinguishable from random for point functions drawn from the uniform distribution. However, we note that in the generic group model, indistinguishability from random does imply distributional VBB.
 
13
To see this informally, consider any obfuscation scheme for an evasive functionality given by \((\mathsf {Obf},\mathsf {Eval})\) that achieves weak functionality preservation. Now define \((\mathsf {Obf}',\mathsf {Eval}')\) where \(\mathsf {Obf}'(C)\) samples a random y from the input space and then outputs \(\mathsf {Obf}(C),y\). Then \(\mathsf {Eval}(\mathsf {Obf}',x)\) returns \(\mathsf {Eval}(\mathsf {Obf},x)\) if \(x \ne y\), but returns 1 if \(x = y\). It is not hard to see that this scheme still satisfies weak functionality preservation, but now an adversary can easily tell that functionality preservation is violated at y, so computational functionality preservation is violated.
 
14
This is reminiscent of the notion of input-hiding obfuscation [6], but different in that we require that the adversary cannot find an accepting input for the obfuscated circuit rather than the original circuit.
 
Literatur
3.
Zurück zum Zitat Applebaum, B., Avron, J., Brzuska, C.: Arithmetic cryptography: extended abstract. In: Roughgarden, T. (ed.) ITCS 2015, pp. 143–151. ACM (2015) Applebaum, B., Avron, J., Brzuska, C.: Arithmetic cryptography: extended abstract. In: Roughgarden, T. (ed.) ITCS 2015, pp. 143–151. ACM (2015)
4.
Zurück zum Zitat Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography with constant input locality. J. Cryptol. 22(4), 429–469 (2009)MathSciNetCrossRef Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography with constant input locality. J. Cryptol. 22(4), 429–469 (2009)MathSciNetCrossRef
11.
Zurück zum Zitat Beullens, W., Wee, H.: Obfuscating simple functionalities from knowledge assumptions. In: PKC. LNCS. Springer (2019) Beullens, W., Wee, H.: Obfuscating simple functionalities from knowledge assumptions. In: PKC. LNCS. Springer (2019)
19.
Zurück zum Zitat Brakerski, Z., Vaikuntanathan, V., Wee, H., Wichs, D.: Obfuscating conjunctions under entropic ring LWE. In: Sudan, M. (ed.) ITCS 2016, pp. 147–156. ACM (2016) Brakerski, Z., Vaikuntanathan, V., Wee, H., Wichs, D.: Obfuscating conjunctions under entropic ring LWE. In: Sudan, M. (ed.) ITCS 2016, pp. 147–156. ACM (2016)
22.
Zurück zum Zitat Canetti, R., Micciancio, D., Reingold, O.: Perfectly one-way probabilistic hash functions (preliminary version). In: 30th ACM STOC, pp. 131–140. ACM Press (1998) Canetti, R., Micciancio, D., Reingold, O.: Perfectly one-way probabilistic hash functions (preliminary version). In: 30th ACM STOC, pp. 131–140. ACM Press (1998)
24.
Zurück zum Zitat Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 621–630. ACM Press (2009) Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 621–630. ACM Press (2009)
25.
Zurück zum Zitat Dodis, Y., Smith, A.: Correcting errors without leaking partial information. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 654–663. ACM Press (2005) Dodis, Y., Smith, A.: Correcting errors without leaking partial information. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 654–663. ACM Press (2005)
26.
Zurück zum Zitat Döttling, N.: Low noise LPN: key dependent message secure public key encryption an sample amplification. IET Inf. Secur. 10(6), 372–385 (2016)CrossRef Döttling, N.: Low noise LPN: key dependent message secure public key encryption an sample amplification. IET Inf. Secur. 10(6), 372–385 (2016)CrossRef
30.
Zurück zum Zitat Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 99–108. ACM Press (2011) Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 99–108. ACM Press (2011)
31.
Zurück zum Zitat Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: 58th FOCS, pp. 612–621. IEEE Computer Society Press (2017) Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: 58th FOCS, pp. 612–621. IEEE Computer Society Press (2017)
37.
Zurück zum Zitat Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like assumptions on constant-degree graded encodings. In: Dinur, I. (ed.) 57th FOCS, pp. 11–20. IEEE Computer Society Press (2016) Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like assumptions on constant-degree graded encodings. In: Dinur, I. (ed.) 57th FOCS, pp. 11–20. IEEE Computer Society Press (2016)
43.
Zurück zum Zitat Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press (2014) Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press (2014)
46.
Zurück zum Zitat Wee, H.: On obfuscating point functions. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 523–532. ACM Press (2005) Wee, H.: On obfuscating point functions. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 523–532. ACM Press (2005)
47.
Zurück zum Zitat Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE. In: 58th FOCS, pp. 600–611. IEEE Computer Society Press (2017) Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE. In: 58th FOCS, pp. 600–611. IEEE Computer Society Press (2017)
Metadaten
Titel
New Techniques for Obfuscating Conjunctions
verfasst von
James Bartusek
Tancrède Lepoint
Fermi Ma
Mark Zhandry
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-17659-4_22

Premium Partner