Skip to main content
Erschienen in: Quantum Information Processing 9/2021

01.09.2021

Fault-tolerant blind quantum computing using GHZ states over depolarization channel

verfasst von: Xiaoqing Tan, Hong Tao, Xiaoqian Zhang, Xiaodan Zeng, Qingshan Xu

Erschienen in: Quantum Information Processing | Ausgabe 9/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Blind quantum computing (BQC) allows a client with limited quantum technology to delegate her quantum computational tasks to a server who can perform universal quantum computation while retaining the client’s secret information. Firstly, in qubits transmission between the server and the client, the loss of qubits is inevitable due to the channel noise. Thus, we propose a fault-tolerant framework for blind quantum computing using logical GHZ states over depolarization channels. In our protocol, an encoded GHZ state by 7-qubit Calderbank–Shor–Steane code is sent by the quantum channel as a medium of quantum teleportation. The client only makes a single-qubit measurement on the third qubit of the logical GHZ state, and the remaining Bell state is shared between the client and the server. After decoding logical Bell state, the client and the server perform the measurement-based blind quantum computing protocol. Secondly, there are two classes of collective noises in the channel, which will affect the blind quantum computing. We modify our BQC protocol to overcome the collective-dephasing noise and the collective-rotating noise with logical states \(|H_{dp}\rangle \), \(|V_{dp}\rangle \), \(|H_{r}\rangle \) and \(|V_{r}\rangle \). Our protocol is robust against channel noise and qubits loss.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bennett C.H., Brassard, G., Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, vol. 10–12, pp. 175–179 (1984) Bennett C.H., Brassard, G., Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, vol. 10–12, pp. 175–179 (1984)
2.
Zurück zum Zitat Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)ADSCrossRef Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)ADSCrossRef
3.
Zurück zum Zitat Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMathSciNetCrossRef Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMathSciNetCrossRef
4.
Zurück zum Zitat Andrew, M.: Childs, secure assisted quantum computation. Quant. Inform. Comput. 5, 456–466 (2005) Andrew, M.: Childs, secure assisted quantum computation. Quant. Inform. Comput. 5, 456–466 (2005)
5.
Zurück zum Zitat Fisher, K.A.G., Broadbent, A., Shalm, L.K., Yan, Z., Lavoie, J., Prevedel, R., Jennewein, T., Resch, K.J.: Quantum computing on encrypted data. Nat. Commun. 5, 3074 (2014)ADSCrossRef Fisher, K.A.G., Broadbent, A., Shalm, L.K., Yan, Z., Lavoie, J., Prevedel, R., Jennewein, T., Resch, K.J.: Quantum computing on encrypted data. Nat. Commun. 5, 3074 (2014)ADSCrossRef
6.
Zurück zum Zitat Fitzsimons, J.F.: Private quantum computation, an introduction to blind quantum computing and related protocols. NPJ Quant. Inform. 3, 23 (2017)ADSCrossRef Fitzsimons, J.F.: Private quantum computation, an introduction to blind quantum computing and related protocols. NPJ Quant. Inform. 3, 23 (2017)ADSCrossRef
7.
Zurück zum Zitat Pablo, A., Louis, S.: Blind quantum computation. Int. J. Quant. Inform. 4, 883–898 (2006)CrossRef Pablo, A., Louis, S.: Blind quantum computation. Int. J. Quant. Inform. 4, 883–898 (2006)CrossRef
8.
Zurück zum Zitat Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: 2009 50th Annual IEEE Symposium on Foundations of Computer Science, vol. 5, pp. 17–526 (2009) Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: 2009 50th Annual IEEE Symposium on Foundations of Computer Science, vol. 5, pp. 17–526 (2009)
9.
Zurück zum Zitat Briegel, H., Browne, D., Dür, W., Raussendorf, R., Van den Nest, M.: Measurement-based quantum computation. Nat. Phys. 5, 19–26 (2009)CrossRef Briegel, H., Browne, D., Dür, W., Raussendorf, R., Van den Nest, M.: Measurement-based quantum computation. Nat. Phys. 5, 19–26 (2009)CrossRef
10.
Zurück zum Zitat Broadbent, A., Fitzsimons, J., Kashefi, E.: Measurement-Based and Universal Blind Quantum Computation, vol. 4, pp. 3–86. Springer, Berlin (2010)MATH Broadbent, A., Fitzsimons, J., Kashefi, E.: Measurement-Based and Universal Blind Quantum Computation, vol. 4, pp. 3–86. Springer, Berlin (2010)MATH
11.
Zurück zum Zitat Barz, S., Kashefi, E., Broadbent, A., Fitzsimons, J.F., Zeilinger, A., Walther, P.: Demonstration of blind quantum computing. Science 335, 303–308 (2012)ADSMathSciNetCrossRef Barz, S., Kashefi, E., Broadbent, A., Fitzsimons, J.F., Zeilinger, A., Walther, P.: Demonstration of blind quantum computing. Science 335, 303–308 (2012)ADSMathSciNetCrossRef
12.
Zurück zum Zitat Morimae, T., Fujii, K.: Secure entanglement distillation for double-server blind quantum computation. Phys. Rev. Lett. 111, 020502 (2013)ADSCrossRef Morimae, T., Fujii, K.: Secure entanglement distillation for double-server blind quantum computation. Phys. Rev. Lett. 111, 020502 (2013)ADSCrossRef
13.
Zurück zum Zitat Li, Q., Chan, W.H., Wu, C.H., Wen, Z.H.: Triple-server blind quantum computation using entanglement swapping. Phys. Rev. A 89, 040302 (2014)ADSCrossRef Li, Q., Chan, W.H., Wu, C.H., Wen, Z.H.: Triple-server blind quantum computation using entanglement swapping. Phys. Rev. A 89, 040302 (2014)ADSCrossRef
14.
Zurück zum Zitat Tomoyuki, M., Keisuke, F.: Blind topological measurement-based quantum computation. Nat. Commun. 3, 1036 (2012)CrossRef Tomoyuki, M., Keisuke, F.: Blind topological measurement-based quantum computation. Nat. Commun. 3, 1036 (2012)CrossRef
15.
Zurück zum Zitat Raussendorf, R., Harrington, J.: Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett. 99, 190504 (2007)CrossRef Raussendorf, R., Harrington, J.: Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett. 99, 190504 (2007)CrossRef
16.
Zurück zum Zitat Morimae, T., Fujii, K.: Blind quantum computation protocol in which Alice only makes measurements. Phys. Rev. A 87, 050301 (2013)ADSCrossRef Morimae, T., Fujii, K.: Blind quantum computation protocol in which Alice only makes measurements. Phys. Rev. A 87, 050301 (2013)ADSCrossRef
17.
Zurück zum Zitat Greganti, C., Roehsner, M.C., Barz, S., Morimae, T., Walther, P.: Demonstration of measurement-only blind quantum computing. N. J. Phys. 18, 013020 (2016)CrossRef Greganti, C., Roehsner, M.C., Barz, S., Morimae, T., Walther, P.: Demonstration of measurement-only blind quantum computing. N. J. Phys. 18, 013020 (2016)CrossRef
18.
Zurück zum Zitat Takeuchi, Y., Fujii, K., Ikuta, R., Yamamoto, T., Imoto, N.: Blind quantum computation over a collective-noise channel. Phys. Rev. A 93, 052307 (2016)ADSCrossRef Takeuchi, Y., Fujii, K., Ikuta, R., Yamamoto, T., Imoto, N.: Blind quantum computation over a collective-noise channel. Phys. Rev. A 93, 052307 (2016)ADSCrossRef
19.
Zurück zum Zitat Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)ADSCrossRef Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)ADSCrossRef
20.
Zurück zum Zitat Dr, W., Briegel, H.J.: Entanglement purification and quantum error correction. Rep. Progress Phys. 70, 1381–1424 (2007)ADSMathSciNetCrossRef Dr, W., Briegel, H.J.: Entanglement purification and quantum error correction. Rep. Progress Phys. 70, 1381–1424 (2007)ADSMathSciNetCrossRef
21.
Zurück zum Zitat Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79, 3306–3309 (1997)ADSCrossRef Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79, 3306–3309 (1997)ADSCrossRef
22.
Zurück zum Zitat Sheng, Y.B., Zhou, L.: Deterministic entanglement distillation for secure double-server blind quantum computation. Cien. Rep. 5, 7815 (2015) Sheng, Y.B., Zhou, L.: Deterministic entanglement distillation for secure double-server blind quantum computation. Cien. Rep. 5, 7815 (2015)
23.
Zurück zum Zitat Kwiat, P.G., Berglund, A.J., Altepeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science 260, 498–501 (2000)ADSCrossRef Kwiat, P.G., Berglund, A.J., Altepeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science 260, 498–501 (2000)ADSCrossRef
24.
Zurück zum Zitat Tian-Yu, Y.: Fault-tolerant quantum dialogue without information leakage based on entanglement swapping between two logical bell states. Commun. Theor. Phys. 63, 431–438 (2015)ADSCrossRef Tian-Yu, Y.: Fault-tolerant quantum dialogue without information leakage based on entanglement swapping between two logical bell states. Commun. Theor. Phys. 63, 431–438 (2015)ADSCrossRef
25.
Zurück zum Zitat Kumagai, H., Yamamoto, T., Koashi, M., Imoto, N.: Robustness of quantum communication based on a decoherence-free subspace using a counter-propagating weak coherent light pulse. Phys. Rev. A 87, 052325 (2013)ADSCrossRef Kumagai, H., Yamamoto, T., Koashi, M., Imoto, N.: Robustness of quantum communication based on a decoherence-free subspace using a counter-propagating weak coherent light pulse. Phys. Rev. A 87, 052325 (2013)ADSCrossRef
26.
Zurück zum Zitat Wu, D., Lv, H.J., Xie, G.J.: Robust anti-collective noise quantum secure direct dialogue using logical bell states. Int. J. Theor. Phys. 55, 1–13 (2015)MATH Wu, D., Lv, H.J., Xie, G.J.: Robust anti-collective noise quantum secure direct dialogue using logical bell states. Int. J. Theor. Phys. 55, 1–13 (2015)MATH
27.
Zurück zum Zitat Stucki, D., Gisin, N., Guinnard, O., Ribordy, G., Zbinden, H.: Quantum key distribution over 67 km with a plugplay system. N. J. Phys. 4, 41 (2002)CrossRef Stucki, D., Gisin, N., Guinnard, O., Ribordy, G., Zbinden, H.: Quantum key distribution over 67 km with a plugplay system. N. J. Phys. 4, 41 (2002)CrossRef
28.
Zurück zum Zitat Yamamoto, T., Shimamura, J., Özdemir, Ş.K., Koashi, M., Imoto, N.: Faithful qubit distribution assisted by one additional qubit against collective noise. Phys. Rev. Lett. 95, 040503 (2005)ADSCrossRef Yamamoto, T., Shimamura, J., Özdemir, Ş.K., Koashi, M., Imoto, N.: Faithful qubit distribution assisted by one additional qubit against collective noise. Phys. Rev. Lett. 95, 040503 (2005)ADSCrossRef
30.
Zurück zum Zitat Yang, C.W., Tsai, C.W., Hwang, T.: Fault tolerant deterministic quantum communications using GHZ states over collective-noise channels. Quant. Inform. Process. 12, 3043–3055 (2013)ADSMathSciNetCrossRef Yang, C.W., Tsai, C.W., Hwang, T.: Fault tolerant deterministic quantum communications using GHZ states over collective-noise channels. Quant. Inform. Process. 12, 3043–3055 (2013)ADSMathSciNetCrossRef
31.
Zurück zum Zitat Zhang, X.Q., Weng, J., Lu, W., Li, X.C., Luo, W.Q., Tan, X.Q.: Greenberger–Horne–Zeilinger states-based blind quantum computation with entanglement concentration. Sci. Rep. 7, 11104 (2017)ADSCrossRef Zhang, X.Q., Weng, J., Lu, W., Li, X.C., Luo, W.Q., Tan, X.Q.: Greenberger–Horne–Zeilinger states-based blind quantum computation with entanglement concentration. Sci. Rep. 7, 11104 (2017)ADSCrossRef
32.
Zurück zum Zitat Ye, T.: Fault tolerant channel-encrypting quantum dialogue against collective noise. Sci. China Phys. Mech. Astron. 58, 1–10 (2015) Ye, T.: Fault tolerant channel-encrypting quantum dialogue against collective noise. Sci. China Phys. Mech. Astron. 58, 1–10 (2015)
33.
Zurück zum Zitat Gu, B., Mu, L., Ding, L.G., Zhang, C.Y., Li, C.Q.: Fault tolerant three-party quantum secret sharing against collective noise. Opt. Commun. 283, 3099–3103 (2010)ADSCrossRef Gu, B., Mu, L., Ding, L.G., Zhang, C.Y., Li, C.Q.: Fault tolerant three-party quantum secret sharing against collective noise. Opt. Commun. 283, 3099–3103 (2010)ADSCrossRef
34.
Zurück zum Zitat Gu, B., Pei, S.X., Song, B., Zhong, K.: Deterministic secure quantum communication over a collective-noise channel. Sci. China Ser. G Phys. Mech. Astron. 52, 1913–1917 (2009)ADSCrossRef Gu, B., Pei, S.X., Song, B., Zhong, K.: Deterministic secure quantum communication over a collective-noise channel. Sci. China Ser. G Phys. Mech. Astron. 52, 1913–1917 (2009)ADSCrossRef
35.
Zurück zum Zitat Xiao, M., Liu, L., Song, X.I.: Multi-server blind quantum computation over collective-noise channels. Quant. Inform. Process. 17, 63 (2018)ADSMathSciNetCrossRef Xiao, M., Liu, L., Song, X.I.: Multi-server blind quantum computation over collective-noise channels. Quant. Inform. Process. 17, 63 (2018)ADSMathSciNetCrossRef
36.
Zurück zum Zitat Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th edn. Cambridge University Press, Cambridge (2011)MATH Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th edn. Cambridge University Press, Cambridge (2011)MATH
Metadaten
Titel
Fault-tolerant blind quantum computing using GHZ states over depolarization channel
verfasst von
Xiaoqing Tan
Hong Tao
Xiaoqian Zhang
Xiaodan Zeng
Qingshan Xu
Publikationsdatum
01.09.2021
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 9/2021
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-021-03197-8

Weitere Artikel der Ausgabe 9/2021

Quantum Information Processing 9/2021 Zur Ausgabe

Neuer Inhalt