Skip to main content
Erschienen in: Telecommunication Systems 2/2017

26.05.2016

Energy adaptive MAC for wireless sensor networks with RF energy transfer: algorithm, analysis, and implementation

verfasst von: Jaeho Kim, Jang-Won Lee

Erschienen in: Telecommunication Systems | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Radio frequency energy transfer (RET) has been proposed as a promising solution to power sensor nodes in wireless sensor networks (WSNs). However, RET has a significant drawback to be directly applied to WSNs, i.e., unfairness in the achieved throughput among sensor nodes due to the difference of their energy harvesting rates that strongly depend on the distance between the energy emitting node and the energy harvesting nodes. The unfairness problem should be properly taken into account to mitigate the drawback caused from the features of RET. To resolve this issue, in this paper, we propose a medium access control (MAC) protocol for WSNs based on RET with two distinguishing features: energy adaptive (EA) duty cycle management that adaptively manages the duty cycle of sensor nodes according to their energy harvesting rates and EA contention algorithm that adaptively manages contentions among sensor nodes considering fairness. Through analysis and simulation, we show that our MAC protocol works well under the RET environment. Finally, to show the feasibility of WSNs with RET, we test our MAC protocol with a prototype system in a real environment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
A backoff slot is a unit slot used for the backoff procedure.
 
2
maxCSMABackoffs is the maximum number of performing CCA before a slave node declares the failure of its channel access.
 
Literatur
3.
Zurück zum Zitat Part 15.4. (2006). Wireless medium access control (MAC) and physical layer (Phy) specifications for low-rate wireless personal area networks (LR-WPANS). IEEE 802.15.4. standard. Part 15.4. (2006). Wireless medium access control (MAC) and physical layer (Phy) specifications for low-rate wireless personal area networks (LR-WPANS). IEEE 802.15.4. standard.
4.
Zurück zum Zitat Basagni, S., Naderi, M. Y., Petrioli, C., & Spenza, D. (2013). Wireless sensor networks with energy harvesting. In Mobile Ad Hoc Networking: The Cutting Edge Directions (pp. 703–736). NJ: John Wiley & Sons, Inc. Basagni, S., Naderi, M. Y., Petrioli, C., & Spenza, D. (2013). Wireless sensor networks with energy harvesting. In Mobile Ad Hoc Networking: The Cutting Edge Directions (pp. 703–736). NJ: John Wiley & Sons, Inc.
5.
Zurück zum Zitat Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.CrossRef Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.CrossRef
6.
Zurück zum Zitat Dondi, D., Scorcioni, S., Bertacchini, A., Larcher, L., & Pavan, P. (2012). An autonomous wireless sensor network device powered by a RF energy harvesting system. In IEEE IECON 2012 (pp 2557–2562). Dondi, D., Scorcioni, S., Bertacchini, A., Larcher, L., & Pavan, P. (2012). An autonomous wireless sensor network device powered by a RF energy harvesting system. In IEEE IECON 2012 (pp 2557–2562).
7.
Zurück zum Zitat Doost, R., Chowdhury, K. R., & Di Felice, M. (2010). Routing and link layer protocol design for sensor networks with wireless energy transfer. In IEEE GLOBECOM 2010 (pp 1–5). Doost, R., Chowdhury, K. R., & Di Felice, M. (2010). Routing and link layer protocol design for sensor networks with wireless energy transfer. In IEEE GLOBECOM 2010 (pp 1–5).
8.
Zurück zum Zitat Eu, Z. A., Seah, W. K. G., & Tan, H. P. (2008). A study of MAC schemes for wireless sensor networks powered by ambient energy harvesting. In WICON 2008 (p. 78). Eu, Z. A., Seah, W. K. G., & Tan, H. P. (2008). A study of MAC schemes for wireless sensor networks powered by ambient energy harvesting. In WICON 2008 (p. 78).
9.
Zurück zum Zitat Eu, Z. A., Tan, H. P., & Seah, W. K. G. (2010). Wireless sensor networks powered by ambient energy harvesting: An empirical characterization. In IEEE ICC 2010 (pp 1–5). Eu, Z. A., Tan, H. P., & Seah, W. K. G. (2010). Wireless sensor networks powered by ambient energy harvesting: An empirical characterization. In IEEE ICC 2010 (pp 1–5).
10.
Zurück zum Zitat Eu, Z. A., Tan, H. P., & Seah, W. K. G. (2011). Design and performance analysis of MAC schemes for wireless sensor networks powered by ambient energy harvesting. Ad Hoc Networks, 9(3), 300–323.CrossRef Eu, Z. A., Tan, H. P., & Seah, W. K. G. (2011). Design and performance analysis of MAC schemes for wireless sensor networks powered by ambient energy harvesting. Ad Hoc Networks, 9(3), 300–323.CrossRef
11.
Zurück zum Zitat Fafoutis, X., & Dragoni, N. (2011). ODMAC: An on-demand MAC protocol for energy harvesting—Wireless sensor networks. In ACM PE-WASUN 2011 (pp 49–56). Fafoutis, X., & Dragoni, N. (2011). ODMAC: An on-demand MAC protocol for energy harvesting—Wireless sensor networks. In ACM PE-WASUN 2011 (pp 49–56).
12.
Zurück zum Zitat Fafoutis, X., & Dragoni, N. (2012). Adaptive media access control for energy harvesting—Wireless sensor networks. In INSS 2012 (pp 1–4). Fafoutis, X., & Dragoni, N. (2012). Adaptive media access control for energy harvesting—Wireless sensor networks. In INSS 2012 (pp 1–4).
13.
Zurück zum Zitat Fujii, C., & Seah, W. K. (2011). Multi-tier probabilistic polling in wireless sensor networks powered by energy harvesting. In IISSNIP 2011 (pp 383–388). Fujii, C., & Seah, W. K. (2011). Multi-tier probabilistic polling in wireless sensor networks powered by energy harvesting. In IISSNIP 2011 (pp 383–388).
14.
Zurück zum Zitat Hsu, J., Zahedi, S., Kansal, A., Srivastava, M., & Raghunathan, V. (2006). Adaptive duty cycling for energy harvesting systems. In ACM LSLPED 2006 (pp 180–185). Hsu, J., Zahedi, S., Kansal, A., Srivastava, M., & Raghunathan, V. (2006). Adaptive duty cycling for energy harvesting systems. In ACM LSLPED 2006 (pp 180–185).
15.
Zurück zum Zitat Jain, R., Chiu, D. M., & Hawe, W. R. (1984). A quantitative measure of fairness and discrimination for resource allocation in shared computer system. Maynard, MA: Digital Equipment Corporation. Jain, R., Chiu, D. M., & Hawe, W. R. (1984). A quantitative measure of fairness and discrimination for resource allocation in shared computer system. Maynard, MA: Digital Equipment Corporation.
16.
Zurück zum Zitat Kahrobaee, S., & Vuran, M. C. (2013). Vibration energy harvesting for wireless underground sensor networks. In IEEE ICC 2013 (pp 1543–1548). Kahrobaee, S., & Vuran, M. C. (2013). Vibration energy harvesting for wireless underground sensor networks. In IEEE ICC 2013 (pp 1543–1548).
17.
Zurück zum Zitat Kansal, A., Hsu, J., Zahedi, S., & Srivastava, M. B. (2007). Power management in energy harvesting sensor networks. ACM Transactions on Embedded Computing Systems, 6(4), 32.CrossRef Kansal, A., Hsu, J., Zahedi, S., & Srivastava, M. B. (2007). Power management in energy harvesting sensor networks. ACM Transactions on Embedded Computing Systems, 6(4), 32.CrossRef
18.
Zurück zum Zitat Kim, J., & Lee, J. W. (2011). Energy adaptive MAC protocol for wireless sensor networks with RF energy transfer. In ICUFN 2011 (pp 89–94). Kim, J., & Lee, J. W. (2011). Energy adaptive MAC protocol for wireless sensor networks with RF energy transfer. In ICUFN 2011 (pp 89–94).
19.
Zurück zum Zitat Kim, J., & Lee, J. W. (2011). Performance analysis of the energy adaptive MAC protocol for wireless sensor networks with RF energy transfer. In ICTC 2011 (pp 14–19). Kim, J., & Lee, J. W. (2011). Performance analysis of the energy adaptive MAC protocol for wireless sensor networks with RF energy transfer. In ICTC 2011 (pp 14–19).
20.
Zurück zum Zitat Liu, V., Parks, A., Talla, V., Gollakota, S., Wetherall, D., & Smith, J. R. (2013). Ambient backscatter: Wireless communication out of thin air. In ACM SIGCOMM 2013 (pp 39–50). Liu, V., Parks, A., Talla, V., Gollakota, S., Wetherall, D., & Smith, J. R. (2013). Ambient backscatter: Wireless communication out of thin air. In ACM SIGCOMM 2013 (pp 39–50).
21.
Zurück zum Zitat Michelusi, N., & Zorzi, M. (2013). Optimal random multiaccess in energy harvesting wireless sensor networks. In IEEE ICC 2013 (pp 463–468). Michelusi, N., & Zorzi, M. (2013). Optimal random multiaccess in energy harvesting wireless sensor networks. In IEEE ICC 2013 (pp 463–468).
22.
Zurück zum Zitat Naderi, M. Y., Chowdhury, K. R., & Basagni, S. (2015). Wireless sensor networks with RF energy harvesting: Energy models and analysis. In IEEE WCNC 2015. Naderi, M. Y., Chowdhury, K. R., & Basagni, S. (2015). Wireless sensor networks with RF energy harvesting: Energy models and analysis. In IEEE WCNC 2015.
23.
Zurück zum Zitat Nintanavongsa, P., Naderi, M. Y., & Chowdhury, K. R. (2013). Medium access control protocol design for sensors powered by wireless energy transfer. In IEEE INFOCOM 2013 (pp 150–154). Nintanavongsa, P., Naderi, M. Y., & Chowdhury, K. R. (2013). Medium access control protocol design for sensors powered by wireless energy transfer. In IEEE INFOCOM 2013 (pp 150–154).
24.
Zurück zum Zitat Nishimoto, H., Kawahara, Y., & Asami, T. (2010). Prototype implementation of ambient RF energy harvesting wireless sensor networks. In IEEE sensors 2010 (pp 1282–1287). Nishimoto, H., Kawahara, Y., & Asami, T. (2010). Prototype implementation of ambient RF energy harvesting wireless sensor networks. In IEEE sensors 2010 (pp 1282–1287).
25.
Zurück zum Zitat Nishimoto, H., Kawahara, Y., & Asami, T. (2010). Prototype implementation of wireless sensor network using TV broadcast RF energy harvesting. In ACM Ubicomp 2010 (pp 373–374). Nishimoto, H., Kawahara, Y., & Asami, T. (2010). Prototype implementation of wireless sensor network using TV broadcast RF energy harvesting. In ACM Ubicomp 2010 (pp 373–374).
26.
Zurück zum Zitat Olds, J. P., & Seah, W. K. G. (2012). Design of an active radio frequency powered multi-hop wireless sensor network. In IEEE ICIEA 2012 (pp 1721–1726). Olds, J. P., & Seah, W. K. G. (2012). Design of an active radio frequency powered multi-hop wireless sensor network. In IEEE ICIEA 2012 (pp 1721–1726).
27.
Zurück zum Zitat Pollin, S., Ergen, M., Ergen, S., Bougard, B., Der Perre, L., Moerman, I., et al. (2008). Performance analysis of slotted carrier sense IEEE 802.15.4 medium access layer. IEEE Transactions on Wireless Communications, 7(9), 3359–3371.CrossRef Pollin, S., Ergen, M., Ergen, S., Bougard, B., Der Perre, L., Moerman, I., et al. (2008). Performance analysis of slotted carrier sense IEEE 802.15.4 medium access layer. IEEE Transactions on Wireless Communications, 7(9), 3359–3371.CrossRef
28.
Zurück zum Zitat Rappaport, T. S. (2002). Wireless communications. Upper Saddle River, NJ: Prentice Hall PTR. Rappaport, T. S. (2002). Wireless communications. Upper Saddle River, NJ: Prentice Hall PTR.
29.
Zurück zum Zitat Seah, W. K. G., Eu, Z. A., & Tan, H. P. (2009). Wireless sensor networks powered by ambient energy harvesting (WSN-HEAP)—Survey and challenges. In Wireless communication, vehicular technology, information theory and aerospace and electronic systems technology 2009 (pp 1–5). Seah, W. K. G., Eu, Z. A., & Tan, H. P. (2009). Wireless sensor networks powered by ambient energy harvesting (WSN-HEAP)—Survey and challenges. In Wireless communication, vehicular technology, information theory and aerospace and electronic systems technology 2009 (pp 1–5).
30.
Zurück zum Zitat Seah, W. K. G., & Olds, J. P. (2013). Data delivery scheme for wireless sensor network powered by RF energy harvesting. In IEEE WCNC 2013 (pp 1498–1503). Seah, W. K. G., & Olds, J. P. (2013). Data delivery scheme for wireless sensor network powered by RF energy harvesting. In IEEE WCNC 2013 (pp 1498–1503).
31.
Zurück zum Zitat Selvakumaran, R., Liu, W., Soong, B., Ming, L., & Sum, Y. L. (2009). Design of low power rectenna for wireless power transfer. In IEEE TENCON 2009 (pp 1–5). Selvakumaran, R., Liu, W., Soong, B., Ming, L., & Sum, Y. L. (2009). Design of low power rectenna for wireless power transfer. In IEEE TENCON 2009 (pp 1–5).
32.
Zurück zum Zitat Selvig, B. (2007). Measuring power consumption with CC2430 and Z-stack. Application note AN053. Texas Instruments. Selvig, B. (2007). Measuring power consumption with CC2430 and Z-stack. Application note AN053. Texas Instruments.
33.
Zurück zum Zitat Sim, Z., Shuttleworth, R., Alexander, M., & Grieve, B. (2010). Compact patch antenna design for outdoor RF energy harvesting in wireless sensor networks. Progress in Electromagnetics Research, 105, 273–294.CrossRef Sim, Z., Shuttleworth, R., Alexander, M., & Grieve, B. (2010). Compact patch antenna design for outdoor RF energy harvesting in wireless sensor networks. Progress in Electromagnetics Research, 105, 273–294.CrossRef
34.
Zurück zum Zitat Sudevalayam, S., & Kulkarni, P. (2010). Energy harvesting sensor nodes: Survey and implications. IEEE Communications Surveys and Tutorials, 13(3), 443–461.CrossRef Sudevalayam, S., & Kulkarni, P. (2010). Energy harvesting sensor nodes: Survey and implications. IEEE Communications Surveys and Tutorials, 13(3), 443–461.CrossRef
35.
Zurück zum Zitat Ungan, T., & Reindl, L. (2008). Harvesting low ambient RF-sources for autonomous measurement systems. In IEEE IMTC 2008 (pp 62–65). Ungan, T., & Reindl, L. (2008). Harvesting low ambient RF-sources for autonomous measurement systems. In IEEE IMTC 2008 (pp 62–65).
36.
Zurück zum Zitat Vigorito, C. M., Ganesan, D., & Barto, A. G. (2007). Adaptive control of duty cycling in energy-harvesting wireless sensor networks. In IEEE SECON 2007 (pp 21–30). Vigorito, C. M., Ganesan, D., & Barto, A. G. (2007). Adaptive control of duty cycling in energy-harvesting wireless sensor networks. In IEEE SECON 2007 (pp 21–30).
37.
Zurück zum Zitat Yan, H., Montero, J., Akhnoukh, A., de Vreede, L. C. N., & Burghartz, J. (2005). An integration scheme for RF power harvesting. In STW annual workshop on semiconductor advances for future electronics and sensors 2005 (pp 64–66). Yan, H., Montero, J., Akhnoukh, A., de Vreede, L. C. N., & Burghartz, J. (2005). An integration scheme for RF power harvesting. In STW annual workshop on semiconductor advances for future electronics and sensors 2005 (pp 64–66).
38.
Zurück zum Zitat Yoo, H., Shim, M., & Kim, D. (2012). Dynamic duty-cycle scheduling schemes for energy-harvesting wireless sensor network. IEEE Communications Letters, 16(2), 202–204.CrossRef Yoo, H., Shim, M., & Kim, D. (2012). Dynamic duty-cycle scheduling schemes for energy-harvesting wireless sensor network. IEEE Communications Letters, 16(2), 202–204.CrossRef
Metadaten
Titel
Energy adaptive MAC for wireless sensor networks with RF energy transfer: algorithm, analysis, and implementation
verfasst von
Jaeho Kim
Jang-Won Lee
Publikationsdatum
26.05.2016
Verlag
Springer US
Erschienen in
Telecommunication Systems / Ausgabe 2/2017
Print ISSN: 1018-4864
Elektronische ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-016-0176-0

Weitere Artikel der Ausgabe 2/2017

Telecommunication Systems 2/2017 Zur Ausgabe