Skip to main content
Erschienen in: Archive of Applied Mechanics 11/2022

09.09.2022 | Original

Drag exerted by a micropolar fluid on a dense swarm of permeable spherical particles

verfasst von: Vandana Mishra, Bali Ram Gupta

Erschienen in: Archive of Applied Mechanics | Ausgabe 11/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work elucidates the slow steady axisymmetric flow of an incompressible non-Newtonian micropolar fluid around and through the swarm of permeable spherical particles in cell using cell model technique. The inner particle in the cell is assumed to be permeable and the outer to be fictitious. The stream function solutions of Stokes equation are obtained for the flow fields. The problem is solved analytically for two models: Kuwabara and Kvashnin. The numerical results for the pressure distribution, microrotation components, drag force experienced by each permeable sphere, flow rate through the permeable surface and wall correction factor are obtained explicitly for both model and their variation with respect to different fluid parameters are presented graphically and discussed. Some previous results for the drag force have been verified. We have concluded that drag force, flow rate and wall correction factor are greater for the case of Kuwabara as compared to Kvashnin cell model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Srinivasacharya, D., Rajyalakshmi, I.: Creeping flow of micropolar fluid past a porous sphere. Appl. Math. Comput. 153, 843–854 (2004)MathSciNetMATH Srinivasacharya, D., Rajyalakshmi, I.: Creeping flow of micropolar fluid past a porous sphere. Appl. Math. Comput. 153, 843–854 (2004)MathSciNetMATH
2.
Zurück zum Zitat Gupta, B.R., Deo, S.: Stokes flow of micropolar fluid past a porous sphere with non zero boundary condition for microrotations. Int. J. Fluid Mech. Res. 37, 424–434 (2010)CrossRef Gupta, B.R., Deo, S.: Stokes flow of micropolar fluid past a porous sphere with non zero boundary condition for microrotations. Int. J. Fluid Mech. Res. 37, 424–434 (2010)CrossRef
3.
Zurück zum Zitat Shukla, P., Ramalakhmi, K.: Flow of micropolar fluid past a porous sphere embedded in another porous medium. Spec. Top. Rev. Porous Media Int. J. 11, 161–175 (2020)CrossRef Shukla, P., Ramalakhmi, K.: Flow of micropolar fluid past a porous sphere embedded in another porous medium. Spec. Top. Rev. Porous Media Int. J. 11, 161–175 (2020)CrossRef
4.
Zurück zum Zitat Madasu, K.P., Bucha, T.: Influence of MHD on micropolar fluid flow past a sphere implanted in porous media. Indian J. Phys. 95, 1175–1183 (2019)CrossRef Madasu, K.P., Bucha, T.: Influence of MHD on micropolar fluid flow past a sphere implanted in porous media. Indian J. Phys. 95, 1175–1183 (2019)CrossRef
5.
Zurück zum Zitat Shukla, P.: Micropolar fluid past a sphere coated with a thin fluid film. Indian J. Sci. Technol. 8, 1–5 (2015)CrossRef Shukla, P.: Micropolar fluid past a sphere coated with a thin fluid film. Indian J. Sci. Technol. 8, 1–5 (2015)CrossRef
6.
Zurück zum Zitat Jayalakshmamma, D.V., Dinesh, P.A., Chandrashekhar, D.V.: Numerical study of micropolar fluid flow past an impervious sphere studied by Jayalakshmamma. Trans Tech Publications Ltd, Switzerland 388, 344–349 (2018) Jayalakshmamma, D.V., Dinesh, P.A., Chandrashekhar, D.V.: Numerical study of micropolar fluid flow past an impervious sphere studied by Jayalakshmamma. Trans Tech Publications Ltd, Switzerland 388, 344–349 (2018)
7.
Zurück zum Zitat Khanukaeva, DYu., Deo, S.: On the Stokes paradox in a micropolar liquid. Colloid J. 81, 395–400 (2019)CrossRef Khanukaeva, DYu., Deo, S.: On the Stokes paradox in a micropolar liquid. Colloid J. 81, 395–400 (2019)CrossRef
8.
Zurück zum Zitat Deo, S., Maurya, P.K.: Micropolar fluid flow through a porous cylinder embedded in another unbounded porous medium. J. Porous Media 24, 89–99 (2021)CrossRef Deo, S., Maurya, P.K.: Micropolar fluid flow through a porous cylinder embedded in another unbounded porous medium. J. Porous Media 24, 89–99 (2021)CrossRef
9.
Zurück zum Zitat Maurya, D.K., Deo, S., Khanukaeva, DYu.: Analysis of Stokes flow of micropolar fluid through a porous cylinder. Math. Meth. Appl. Sci. 44, 6647–6665 (2021)MathSciNetMATHCrossRef Maurya, D.K., Deo, S., Khanukaeva, DYu.: Analysis of Stokes flow of micropolar fluid through a porous cylinder. Math. Meth. Appl. Sci. 44, 6647–6665 (2021)MathSciNetMATHCrossRef
10.
Zurück zum Zitat Chhabra, R.P., Raman, J.R.: Slow non-Newtonian flow past an assemblage of rigid spheres. Chern. Eng. Cornma 27, 23–46 (1984) Chhabra, R.P., Raman, J.R.: Slow non-Newtonian flow past an assemblage of rigid spheres. Chern. Eng. Cornma 27, 23–46 (1984)
11.
Zurück zum Zitat Satish, M.G., Zhu, J.: Flow resistance and mass transfer in slow non- Newtonian flow through multi-particle systems. J. Appl. Mech. 59, 431–437 (1992)CrossRef Satish, M.G., Zhu, J.: Flow resistance and mass transfer in slow non- Newtonian flow through multi-particle systems. J. Appl. Mech. 59, 431–437 (1992)CrossRef
12.
Zurück zum Zitat Ferreira, J.M., Soares, A.A., Chhabra, R.P.: Hydrodynamic behaviour of an ensemble of encapsulated liquid drops in creeping motion: a fluid-mechanic based model for liquid membranes. Fluid Dyn. Res. 32, 201–215 (2003)MathSciNetMATHCrossRef Ferreira, J.M., Soares, A.A., Chhabra, R.P.: Hydrodynamic behaviour of an ensemble of encapsulated liquid drops in creeping motion: a fluid-mechanic based model for liquid membranes. Fluid Dyn. Res. 32, 201–215 (2003)MathSciNetMATHCrossRef
13.
Zurück zum Zitat Deo, S., Yadav, P.K.: Stokes flow past a swarm of porous nanocylindrical particles enclosing a solid core by Deo and Yadav. Int. J. Math. Math. Sci. 2008, 1–8 (2008)CrossRef Deo, S., Yadav, P.K.: Stokes flow past a swarm of porous nanocylindrical particles enclosing a solid core by Deo and Yadav. Int. J. Math. Math. Sci. 2008, 1–8 (2008)CrossRef
14.
Zurück zum Zitat Deo, S., Gupta, B.R.: Stokes flow past a swarm of porous approximately spheroidal particles with Kuwabara boundary condition. Acta Mech. 203, 241–254 (2008)MATHCrossRef Deo, S., Gupta, B.R.: Stokes flow past a swarm of porous approximately spheroidal particles with Kuwabara boundary condition. Acta Mech. 203, 241–254 (2008)MATHCrossRef
15.
Zurück zum Zitat Yadav, P.K., Deo, S., Yadav, M.K., Filippov, A.: On hydrodynamic permeability of a membrane built up by porous deformed spheroidal particles. Colloid J. 75, 611–622 (2013)CrossRef Yadav, P.K., Deo, S., Yadav, M.K., Filippov, A.: On hydrodynamic permeability of a membrane built up by porous deformed spheroidal particles. Colloid J. 75, 611–622 (2013)CrossRef
16.
Zurück zum Zitat Kishore, N., Chhabra, R.P., Eswaran, V.: Drag on ensembles of fluid spheres translating in a power-law liquid at moderate Reynolds numbers. Chem. Eng. J. 139, 224–235 (2008)CrossRef Kishore, N., Chhabra, R.P., Eswaran, V.: Drag on ensembles of fluid spheres translating in a power-law liquid at moderate Reynolds numbers. Chem. Eng. J. 139, 224–235 (2008)CrossRef
17.
Zurück zum Zitat Deo, S., Shukla, P.: Stokes flow past a swarm of porous spherical particles with stress jump condition. J. Int. Acad. Phys. Sci. 13, 49–62 (2009)MATH Deo, S., Shukla, P.: Stokes flow past a swarm of porous spherical particles with stress jump condition. J. Int. Acad. Phys. Sci. 13, 49–62 (2009)MATH
18.
Zurück zum Zitat Deo S., Shukla, P.: Creeping flow past a swarm of porous spherical particles with mehta morse boundary condition. Indian Journal of Biomechanics: Special Issue (NCBM 7–8 March), pp. 123–127 (2009) Deo S., Shukla, P.: Creeping flow past a swarm of porous spherical particles with mehta morse boundary condition. Indian Journal of Biomechanics: Special Issue (NCBM 7–8 March), pp. 123–127 (2009)
19.
Zurück zum Zitat Yadav, P.K.: On the slow viscous flow through a swarm of solid spherical particles covered by porous shells. Appl. Math. 1, 112–121 (2011) Yadav, P.K.: On the slow viscous flow through a swarm of solid spherical particles covered by porous shells. Appl. Math. 1, 112–121 (2011)
20.
Zurück zum Zitat Prakash, J., Sekhar, J.P.R., Kohr, M.: Stokes flow of an assemblage of porous particles: stress jump condition. Z. Angew. Math. Phys. 62, 1027–1046 (2011)MathSciNetMATHCrossRef Prakash, J., Sekhar, J.P.R., Kohr, M.: Stokes flow of an assemblage of porous particles: stress jump condition. Z. Angew. Math. Phys. 62, 1027–1046 (2011)MathSciNetMATHCrossRef
21.
Zurück zum Zitat Faltas, M.S., Saad, E.I.: Stokes flow past an assemblage of slip eccentric spherical particle-in-cell models. Math. Meth. Appl. Sci. 34, 1594–1605 (2011)MathSciNetMATHCrossRef Faltas, M.S., Saad, E.I.: Stokes flow past an assemblage of slip eccentric spherical particle-in-cell models. Math. Meth. Appl. Sci. 34, 1594–1605 (2011)MathSciNetMATHCrossRef
22.
Zurück zum Zitat Saad, E.I.: Motion of a slip sphere in a nonconcentric fictitious spherical envelope of micropolar fluid. ANZIAM J. 55, 383–401 (2014)MathSciNetMATH Saad, E.I.: Motion of a slip sphere in a nonconcentric fictitious spherical envelope of micropolar fluid. ANZIAM J. 55, 383–401 (2014)MathSciNetMATH
24.
Zurück zum Zitat Jaiswal, B.R., Gupta, B.R.: Cell models for viscous flow past a swarm of Reiner-Rivlin liquid spherical drops. Meccanica 52, 69–89 (2016)MathSciNetMATHCrossRef Jaiswal, B.R., Gupta, B.R.: Cell models for viscous flow past a swarm of Reiner-Rivlin liquid spherical drops. Meccanica 52, 69–89 (2016)MathSciNetMATHCrossRef
25.
Zurück zum Zitat Yadav, P.K.: Motion through a non-homogeneous porous medium: hydrodynamic permeability of a membrane composed of cylindrical particles. Eur. Phys. J. Plus 133, (2018). Yadav, P.K.: Motion through a non-homogeneous porous medium: hydrodynamic permeability of a membrane composed of cylindrical particles. Eur. Phys. J. Plus 133, (2018).
26.
Zurück zum Zitat Tiwari, A., Yadav, P.K., Singh, P.: Stokes flow through assemblage of non-homogeneous porous cylindrical particles using cell model technique. Natl. Acad. Sci. Lett. 41, 53–57 (2018)MathSciNetCrossRef Tiwari, A., Yadav, P.K., Singh, P.: Stokes flow through assemblage of non-homogeneous porous cylindrical particles using cell model technique. Natl. Acad. Sci. Lett. 41, 53–57 (2018)MathSciNetCrossRef
27.
Zurück zum Zitat Yadav, P.K., Jaiswal, S., Puchakatla, J.Y.: Micropolar fluid flow through the membrane composed of impermeable cylindrical particles coated by porous layer under the effect of magnetic field. Math. Meth. Appl. Sci. 43, 1–13 (2019)MathSciNetMATH Yadav, P.K., Jaiswal, S., Puchakatla, J.Y.: Micropolar fluid flow through the membrane composed of impermeable cylindrical particles coated by porous layer under the effect of magnetic field. Math. Meth. Appl. Sci. 43, 1–13 (2019)MathSciNetMATH
28.
Zurück zum Zitat Yadav, P.K., Jaiswal, S., Puchakatla, J.Y., Yadav, M.K.: Flow through membrane built up by impermeable spheroid coated with porous layer under the influence of uniform magnetic field: effect of stress jump condition. Eur. Phys. J. Plus 136, 1 (2021)CrossRef Yadav, P.K., Jaiswal, S., Puchakatla, J.Y., Yadav, M.K.: Flow through membrane built up by impermeable spheroid coated with porous layer under the influence of uniform magnetic field: effect of stress jump condition. Eur. Phys. J. Plus 136, 1 (2021)CrossRef
29.
Zurück zum Zitat Joseph, D.D., Tao, L.N.: The effect of permeability on the slow motion of a porous sphere in a viscous liquid. ZAMM 44, 361–364 (1964)MATHCrossRef Joseph, D.D., Tao, L.N.: The effect of permeability on the slow motion of a porous sphere in a viscous liquid. ZAMM 44, 361–364 (1964)MATHCrossRef
30.
Zurück zum Zitat Nandakumar, K., Masliyah, J.H.: Laminar flow past a permeable sphere. Can. J. Chem. Eng. 60, 202–211 (1982)CrossRef Nandakumar, K., Masliyah, J.H.: Laminar flow past a permeable sphere. Can. J. Chem. Eng. 60, 202–211 (1982)CrossRef
31.
Zurück zum Zitat Birikh, R., Rudakoh, R.: Slow motion of a permeable sphere in viscous fluid. Fluid Dyn. 17, 792–793 (1982)MATHCrossRef Birikh, R., Rudakoh, R.: Slow motion of a permeable sphere in viscous fluid. Fluid Dyn. 17, 792–793 (1982)MATHCrossRef
32.
Zurück zum Zitat Wolfersdorf, L.V.: Stokes flow past a sphere with permeable surface. J. Appl. Math. Mech. 69, 111–112 (1989)MathSciNetMATH Wolfersdorf, L.V.: Stokes flow past a sphere with permeable surface. J. Appl. Math. Mech. 69, 111–112 (1989)MathSciNetMATH
33.
Zurück zum Zitat Vasudeviah, M., Malathi, V.: Slow viscous flow past a spinning sphere with permeable surface. Mech. Res. Commun. 22, 191–200 (1995)MATHCrossRef Vasudeviah, M., Malathi, V.: Slow viscous flow past a spinning sphere with permeable surface. Mech. Res. Commun. 22, 191–200 (1995)MATHCrossRef
34.
Zurück zum Zitat Ayaz, F.: Axisymmetric flow through a permeable near-sphere. Appl. Math. Mech. 26, 1319–1331 (2005)MATHCrossRef Ayaz, F.: Axisymmetric flow through a permeable near-sphere. Appl. Math. Mech. 26, 1319–1331 (2005)MATHCrossRef
35.
Zurück zum Zitat Neale, G., Epstein, N.: Creeping flow relative to permeable spheres. Chem. Eng. Sci. 28, 1865–1874 (1973)CrossRef Neale, G., Epstein, N.: Creeping flow relative to permeable spheres. Chem. Eng. Sci. 28, 1865–1874 (1973)CrossRef
36.
Zurück zum Zitat Aparna, P., Murthy, J.V.R., Nagaraju, G.: Slow steady rotation of a permeable sphere in an incompressible couple stress fluid. Int. J. Math. Arch. 6, 1–9 (2015) Aparna, P., Murthy, J.V.R., Nagaraju, G.: Slow steady rotation of a permeable sphere in an incompressible couple stress fluid. Int. J. Math. Arch. 6, 1–9 (2015)
37.
Zurück zum Zitat Aparna P., Murthy J.V.R., Nagaraju, G.: Couple on a rotating permeable sphere in a couple stress fluid. Ain Shams Eng. J. (2016). Aparna P., Murthy J.V.R., Nagaraju, G.: Couple on a rotating permeable sphere in a couple stress fluid. Ain Shams Eng. J. (2016).
38.
Zurück zum Zitat Mishra, V., Gupta, B.R.: Gupta, Drag on permeable sphere placed in a micropolar fluid with non-zero boundary condition for microrotations. J. Appl. Math. Comput. Mech. 15, 103–109 (2016)MATHCrossRef Mishra, V., Gupta, B.R.: Gupta, Drag on permeable sphere placed in a micropolar fluid with non-zero boundary condition for microrotations. J. Appl. Math. Comput. Mech. 15, 103–109 (2016)MATHCrossRef
39.
Zurück zum Zitat Mishra, V., Gupta, B.R.: Motion of a permeable shell in a spherical container filled with non-Newtonian fluid. Appl. Math. Mech. 38, 1697–1708 (2017)MathSciNetMATHCrossRef Mishra, V., Gupta, B.R.: Motion of a permeable shell in a spherical container filled with non-Newtonian fluid. Appl. Math. Mech. 38, 1697–1708 (2017)MathSciNetMATHCrossRef
40.
Zurück zum Zitat Aparna, P., Padmaja, P., Pothanna, N., Murthy, J.V.R.: Couple stress fluid flow due to slow steady oscillations of permeable sphere. Nonlinear Eng. 9, 352–360 (2020)CrossRef Aparna, P., Padmaja, P., Pothanna, N., Murthy, J.V.R.: Couple stress fluid flow due to slow steady oscillations of permeable sphere. Nonlinear Eng. 9, 352–360 (2020)CrossRef
41.
Zurück zum Zitat Prasad, M.K.: Boundary effects of a nonconcentric semipermeable sphere using Happel and Kuwabara cell models. Appl. Comput. Mech. 15, 19–30 (2021) Prasad, M.K.: Boundary effects of a nonconcentric semipermeable sphere using Happel and Kuwabara cell models. Appl. Comput. Mech. 15, 19–30 (2021)
43.
Zurück zum Zitat Namdeo, R.P., Gupta, B.R.: Magnetic effect on the creeping flow around a slightly deformed semipermeable sphere. Arch. Appl. Mech. 92, 241–254 (2021)CrossRef Namdeo, R.P., Gupta, B.R.: Magnetic effect on the creeping flow around a slightly deformed semipermeable sphere. Arch. Appl. Mech. 92, 241–254 (2021)CrossRef
44.
Zurück zum Zitat Happel, J.: Viscous flow in multiparticle system: slow motion of fluids relative to beds of spherical particles. J. A. I. Ch. E. 4, 197–201 (1958)CrossRef Happel, J.: Viscous flow in multiparticle system: slow motion of fluids relative to beds of spherical particles. J. A. I. Ch. E. 4, 197–201 (1958)CrossRef
45.
Zurück zum Zitat Kuwabara, S.: The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. J. Phys. Soc. Jpn. 14, 527–532 (1959)MathSciNetCrossRef Kuwabara, S.: The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. J. Phys. Soc. Jpn. 14, 527–532 (1959)MathSciNetCrossRef
46.
Zurück zum Zitat Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics. Martinus Nijhoff, Publishers, Hague (1983)MATH Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics. Martinus Nijhoff, Publishers, Hague (1983)MATH
47.
Zurück zum Zitat Kvashnin, A.G.: Cell model of suspension of spherical particles. Fluid Dyn. 14, 598–602 (1979)MATHCrossRef Kvashnin, A.G.: Cell model of suspension of spherical particles. Fluid Dyn. 14, 598–602 (1979)MATHCrossRef
48.
Zurück zum Zitat Stokes, G.G.: On the effect of the internal friction of the fluids on the motion of pendulums. Trans. Camb. Philos. Soc. 9, 8–106 (1851) Stokes, G.G.: On the effect of the internal friction of the fluids on the motion of pendulums. Trans. Camb. Philos. Soc. 9, 8–106 (1851)
49.
Zurück zum Zitat Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics. Prentice-Hall, New Jersey (1965)MATH Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics. Prentice-Hall, New Jersey (1965)MATH
Metadaten
Titel
Drag exerted by a micropolar fluid on a dense swarm of permeable spherical particles
verfasst von
Vandana Mishra
Bali Ram Gupta
Publikationsdatum
09.09.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 11/2022
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-022-02244-9

Weitere Artikel der Ausgabe 11/2022

Archive of Applied Mechanics 11/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.