Skip to main content
Erschienen in: Wireless Personal Communications 1/2020

19.06.2020

Dual Ring Resonator Based 3D-Photonic Crystal For Add Drop Filter Using FDTD-Least Square Technique

verfasst von: Neha Singh, Krishna Chandra Roy

Erschienen in: Wireless Personal Communications | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The structure of an optical add-drop filter (ADF) which depends on a very-compact ring resonator made from a photonic crystal has been presented in the paper. An adequate structure of a three channel wavelength de-multiplexer along with a finite difference time domain is demonstrated in the visibility area. A 3D triangular lattice photonic crystal with 1.735 nm air pores in a silicon nitride planar waveguide provides a constraint for the light which can be detected. The double resonator has been simulated on a three-dimension photonic crystal and for the simulation of results, MATLAB has been used. The resultant structure consisting of three drops wavelengths at λ1 = 1555 nm, λ2 = 1579 nm, and λ3 = 1595 nm approximately. The average spacing between the adjacent channels is around 20 nm and the FSR obtained from numerical simulation is about 179 GHz. The output wavelength carries normalized transmissions of 0.97 having an inner rod radius for inner core 800. In addition to this, the Alternating Least Square—Add-Drop Filter (ADF)—Finite Difference Time Domain method has been used to achieve three various outputs such as transmitted intensity, reflectivity fineness, and constant factor. In future aspects, the simulation results can be further used in the fields of networks to design more accurate and efficient photonic crystals based on de-multiplexing devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Minizioni, P., Lacava, C., Tanabe, T., et al. (2019). Roadmap for all optical processing. Journal of Optics, 21(6), 063001.CrossRef Minizioni, P., Lacava, C., Tanabe, T., et al. (2019). Roadmap for all optical processing. Journal of Optics, 21(6), 063001.CrossRef
2.
Zurück zum Zitat Waqas, A., Melati, D., & Melloni, A. (2018). Cascaded Mach–Zehender architectures for photonic integrated delay lines. IEEE Photonics Technology Letters, 30(21), 1830–1833.CrossRef Waqas, A., Melati, D., & Melloni, A. (2018). Cascaded Mach–Zehender architectures for photonic integrated delay lines. IEEE Photonics Technology Letters, 30(21), 1830–1833.CrossRef
3.
Zurück zum Zitat Waqas, A., Melati, D., & Melloni, A. (2017). Sensitivity analysis and uncertainty mitigation of photonic integrated circuits. Journal of Light wave Technology, 35(17), 3713–3721.CrossRef Waqas, A., Melati, D., & Melloni, A. (2017). Sensitivity analysis and uncertainty mitigation of photonic integrated circuits. Journal of Light wave Technology, 35(17), 3713–3721.CrossRef
4.
Zurück zum Zitat Rakhshani, M. R., & Mansouri, M. A. (2012). Heterostructure for channel wavelength demultiplexer using square photonic crystal ring resonator. Journal of Electromagnetic waves and Applications, 26, 1700–1707.CrossRef Rakhshani, M. R., & Mansouri, M. A. (2012). Heterostructure for channel wavelength demultiplexer using square photonic crystal ring resonator. Journal of Electromagnetic waves and Applications, 26, 1700–1707.CrossRef
5.
Zurück zum Zitat Djavid, M., Monif, F., Ghaffari, A., & Abrishamian, M. S. (2008). Heterostructure wavelength division demultiplexer using photonic crystal ring resonator. Optics Communication, 281, 4028–4032.CrossRef Djavid, M., Monif, F., Ghaffari, A., & Abrishamian, M. S. (2008). Heterostructure wavelength division demultiplexer using photonic crystal ring resonator. Optics Communication, 281, 4028–4032.CrossRef
6.
Zurück zum Zitat Wang, C., & Yao, J. P. (2008). Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings. IEEE Photonics Technology Letters, 20(11), 882–884.CrossRef Wang, C., & Yao, J. P. (2008). Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings. IEEE Photonics Technology Letters, 20(11), 882–884.CrossRef
7.
Zurück zum Zitat Zabelin, V., Dunbar, L., Thomas, N. L., Houdre, R., Kotlyar, M., & Krauss, T. (2007). Self-collimating photonic crystal polarization beam splitter. Optics Letters, 32, 530–532.CrossRef Zabelin, V., Dunbar, L., Thomas, N. L., Houdre, R., Kotlyar, M., & Krauss, T. (2007). Self-collimating photonic crystal polarization beam splitter. Optics Letters, 32, 530–532.CrossRef
8.
Zurück zum Zitat Kalyani, V. L., & Sharma, V. (2016). Different types of optical filter and their application. Journal of Management Engineering and Information Technology, 3, 50–55. Kalyani, V. L., & Sharma, V. (2016). Different types of optical filter and their application. Journal of Management Engineering and Information Technology, 3, 50–55.
9.
Zurück zum Zitat Djavid, M., Ghaffari, A., Monifi, F., & Abrishamian, M. S. (2008). T- shaped channel drop filters using photonic crystal ring resonators. Physica E: Low-Dimensional Systems and Nanostructures, 40, 3151–3154.CrossRef Djavid, M., Ghaffari, A., Monifi, F., & Abrishamian, M. S. (2008). T- shaped channel drop filters using photonic crystal ring resonators. Physica E: Low-Dimensional Systems and Nanostructures, 40, 3151–3154.CrossRef
10.
Zurück zum Zitat Schwelb, O. (2004). Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters-a tutorial overview. Lightwave Technology, 22, 1380–1394.CrossRef Schwelb, O. (2004). Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters-a tutorial overview. Lightwave Technology, 22, 1380–1394.CrossRef
11.
Zurück zum Zitat Bogaerts, W., De, Heyn P., Van, Vaerenbergh T., De, Vos K., Selvaraja, S. K., Claes, T., et al. (2012). Silicon microring resonators. Laser & Photonics Reviews, 6, 47–73.CrossRef Bogaerts, W., De, Heyn P., Van, Vaerenbergh T., De, Vos K., Selvaraja, S. K., Claes, T., et al. (2012). Silicon microring resonators. Laser & Photonics Reviews, 6, 47–73.CrossRef
12.
Zurück zum Zitat Monifi, F., Djavid, M., Ghaffari, A., & Abrishamian, M. S. (2008). A new bandstop filter based on photonic crystals. In Proceedings of PIER (pp. 674–677). Monifi, F., Djavid, M., Ghaffari, A., & Abrishamian, M. S. (2008). A new bandstop filter based on photonic crystals. In Proceedings of PIER (pp. 674–677).
13.
Zurück zum Zitat Djavid, M., Ghaffari, A., Monifi, F., & Abrishamian, M. S. (2008). Photonic crystal narrow band filter using biperiodic structures. Journal of Applied Science, 8, 1891–1897.CrossRef Djavid, M., Ghaffari, A., Monifi, F., & Abrishamian, M. S. (2008). Photonic crystal narrow band filter using biperiodic structures. Journal of Applied Science, 8, 1891–1897.CrossRef
14.
Zurück zum Zitat Lipson, M. (2005). Guiding modulating and emitting light on silicon-challenges and opportunities. IEEE Journal of Light wave Technology, 23, 4222–4238.CrossRef Lipson, M. (2005). Guiding modulating and emitting light on silicon-challenges and opportunities. IEEE Journal of Light wave Technology, 23, 4222–4238.CrossRef
15.
Zurück zum Zitat Notomi, M., Shinya, A., Mitsugi, S., Kuramochi, E., & Ryu, H. Y. (2004). Waveguides resonators and their coupled elements in photonic crystal slabs. Optics Express, 12, 1551–1561.CrossRef Notomi, M., Shinya, A., Mitsugi, S., Kuramochi, E., & Ryu, H. Y. (2004). Waveguides resonators and their coupled elements in photonic crystal slabs. Optics Express, 12, 1551–1561.CrossRef
16.
Zurück zum Zitat Little, B. E., Foresi, J., Steinmeyer, G., Thoen, E. R., Chu, S. T., Haus, H., et al. (1998). Ultra-compact Si–SiO2 micro-ring resonator optical channel dropping filters. IEEE Photonics Technology Letters, 10, 549–551.CrossRef Little, B. E., Foresi, J., Steinmeyer, G., Thoen, E. R., Chu, S. T., Haus, H., et al. (1998). Ultra-compact Si–SiO2 micro-ring resonator optical channel dropping filters. IEEE Photonics Technology Letters, 10, 549–551.CrossRef
17.
Zurück zum Zitat Kumar, S., Kumar, A., & Raghuwanshi, S. K. (2014). Analysis of effect of single and multiple micro ring resonator as an optical filters using the Mason’s gain formula. Micro Optics, 9130, 913007(1)–913007(11). Kumar, S., Kumar, A., & Raghuwanshi, S. K. (2014). Analysis of effect of single and multiple micro ring resonator as an optical filters using the Mason’s gain formula. Micro Optics, 9130, 913007(1)–913007(11).
18.
Zurück zum Zitat Bahadoran, M., & Amiri, I. S. (2019). Double critical coupled ring resonator -based- add-drop filters. Journal of Theoretical and Applied Physics, 13, 213–220.CrossRef Bahadoran, M., & Amiri, I. S. (2019). Double critical coupled ring resonator -based- add-drop filters. Journal of Theoretical and Applied Physics, 13, 213–220.CrossRef
19.
Zurück zum Zitat Sadiku, M. N. O., & Kulkarni, S.V. (2015). Principle of Electromagnetics. India: Oxford University Press. Sadiku, M. N. O., & Kulkarni, S.V. (2015). Principle of Electromagnetics. India: Oxford University Press.
20.
Zurück zum Zitat Johnson, S. G., Oskooi, A., & Taflove, A. (2013). Advances in FDTD computational electrodynamics photonics and nanotechnology. Norwood, MA: Artech House. Johnson, S. G., Oskooi, A., & Taflove, A. (2013). Advances in FDTD computational electrodynamics photonics and nanotechnology. Norwood, MA: Artech House.
21.
Zurück zum Zitat Orazio, A. D., De Palo, V., De Sario, M., Petruzelli, V., & Prudenzano, F. (2003). Finite difference time domain modeling of light amplification in active photonic band gap structure. Progress in Electrodynamics Research, PIER, 39, 299–339.CrossRef Orazio, A. D., De Palo, V., De Sario, M., Petruzelli, V., & Prudenzano, F. (2003). Finite difference time domain modeling of light amplification in active photonic band gap structure. Progress in Electrodynamics Research, PIER, 39, 299–339.CrossRef
22.
Zurück zum Zitat Zachariah, D., Sundin, M., Jansson, M., & Chatterjee, S. (2012). Alternating least –squares for low-rank matrix reconstruction. IEEE Signal Processing Letter, 19(4), 231–234.CrossRef Zachariah, D., Sundin, M., Jansson, M., & Chatterjee, S. (2012). Alternating least –squares for low-rank matrix reconstruction. IEEE Signal Processing Letter, 19(4), 231–234.CrossRef
23.
Zurück zum Zitat Meira, D., Viterbo, J.,& Bernardini, F. (2018). An experimental analysis on scalable implementations of the alternating least square algorithm. In Proceeding of the FEDCSIS (pp. 351–359). Meira, D., Viterbo, J.,& Bernardini, F. (2018). An experimental analysis on scalable implementations of the alternating least square algorithm. In Proceeding of the FEDCSIS (pp. 351–359).
24.
Zurück zum Zitat Robinson, S., & Nakkeeran, R. (2013). Two dimensional photonic crystal ring resonator based add-drop filter for CWDM systems. Optik, 124, 3430–3435.CrossRef Robinson, S., & Nakkeeran, R. (2013). Two dimensional photonic crystal ring resonator based add-drop filter for CWDM systems. Optik, 124, 3430–3435.CrossRef
25.
Zurück zum Zitat Dideban, A., Habibiyan, H., & Ghafoorifard, H. (2014). Photonic crystal channel drop filter based on fractral structures. Physica E, Elsevier, 63, 304–310.CrossRef Dideban, A., Habibiyan, H., & Ghafoorifard, H. (2014). Photonic crystal channel drop filter based on fractral structures. Physica E, Elsevier, 63, 304–310.CrossRef
26.
Zurück zum Zitat Arunkumar, R., & Robinson, S. (2016). Network implementation of photonic crystal split ring resonator based ADF. ICTACT Journal on Microelectronics, 10(4), 147–150. Arunkumar, R., & Robinson, S. (2016). Network implementation of photonic crystal split ring resonator based ADF. ICTACT Journal on Microelectronics, 10(4), 147–150.
27.
Zurück zum Zitat Seifouri, M., Olyaee, S., & Fallahi, V. (2017). Ultra –high- Q optical filter based on photonic crystal. Photonic Network Communication, 35(2), 225–230.CrossRef Seifouri, M., Olyaee, S., & Fallahi, V. (2017). Ultra –high- Q optical filter based on photonic crystal. Photonic Network Communication, 35(2), 225–230.CrossRef
Metadaten
Titel
Dual Ring Resonator Based 3D-Photonic Crystal For Add Drop Filter Using FDTD-Least Square Technique
verfasst von
Neha Singh
Krishna Chandra Roy
Publikationsdatum
19.06.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07575-w

Weitere Artikel der Ausgabe 1/2020

Wireless Personal Communications 1/2020 Zur Ausgabe

Neuer Inhalt