Skip to main content
Erschienen in: Acta Mechanica Sinica 4/2019

30.04.2019 | Research Paper

Dynamic crushing of cellular materials: a particle velocity-based analytical method and its application

verfasst von: Shilong Wang, Zhijun Zheng, Yuanyuan Ding, Changfeng Zhu, Jilin Yu

Erschienen in: Acta Mechanica Sinica | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cellular material under high-velocity impact exhibits a typical feature of layerwise collapse. A cell-based finite element model is employed herein to simulate the direct impact of a closed-cell foam, and one-dimensional velocity field distributions are obtained to characterize the crushing band propagating through a cellular material. An explicit expression for the continuous velocity distribution is derived based on the features of the velocity gradient distribution. The velocity distribution function is adopted to determine the dynamic stress–strain states of cellular materials under dynamic loading. The local stress–strain history distribution reveals that sectional cells experience a process from the precursor elastic behavior to the shock stress state, passing through the dynamic initial crushing state. A power-law relation between the dynamic initial crushing stress and the strain rate is established, which confirms the strain rate effect of cellular materials. By extracting the critical points immediately before the unloading stage in the local dynamic stress–strain history curves, the dynamic stress–strain states of cellular materials are determined. They exhibit loading rate dependence but are independent of the initial impact velocity. Furthermore, with increase of the relative density, the dynamic hardening behavior of the cellular specimen is enhanced and the crushing process event is advanced. The particle velocity-based analytical method is applied to analyze the dynamic responses of cellular materials. This method is better than continuum-based shock models, since it does not require a preassumed constitutive relation. Therefore, the particle velocity-based analytical method proposed herein may provide new ideas to carry out dynamic experimental measurements, which is especially applicable to inhomogeneous materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Hanssen, A.G., Enstock, L., Langseth, M.: Close-range blast loading of aluminium foam panels. Int. J. Impact Eng. 27, 593–618 (2002)CrossRef Hanssen, A.G., Enstock, L., Langseth, M.: Close-range blast loading of aluminium foam panels. Int. J. Impact Eng. 27, 593–618 (2002)CrossRef
2.
Zurück zum Zitat Ashby, M.F., Evans, A.G., Fleck, N.A., et al.: Metal Foams: A Design Guide. Butterworth, Heinemann (2000) Ashby, M.F., Evans, A.G., Fleck, N.A., et al.: Metal Foams: A Design Guide. Butterworth, Heinemann (2000)
3.
Zurück zum Zitat Degischer, H.P., Kriszt, B.: Handbook of Cellular Metals: Production, Processing, Applications. Wiley, Weinheim (2002)CrossRef Degischer, H.P., Kriszt, B.: Handbook of Cellular Metals: Production, Processing, Applications. Wiley, Weinheim (2002)CrossRef
4.
Zurück zum Zitat Tatacipta, D., Annisa, J., Oktavia, K.E., et al.: Crashworthiness analysis of foam–filled square column considering strain rate effect of the foam. Thin Walled Struct. 129, 365–380 (2018)CrossRef Tatacipta, D., Annisa, J., Oktavia, K.E., et al.: Crashworthiness analysis of foam–filled square column considering strain rate effect of the foam. Thin Walled Struct. 129, 365–380 (2018)CrossRef
5.
Zurück zum Zitat Tan, P.J., Reid, S.R., Harrigan, J.J., et al.: Dynamic compressive strength properties of aluminium foams. Part I—experimental data and observations. J. Mech. Phys. Solids 53, 2174–2205 (2005)CrossRef Tan, P.J., Reid, S.R., Harrigan, J.J., et al.: Dynamic compressive strength properties of aluminium foams. Part I—experimental data and observations. J. Mech. Phys. Solids 53, 2174–2205 (2005)CrossRef
6.
Zurück zum Zitat Reid, S.R., Peng, C.: Dynamic uniaxial crushing of wood. Int. J. Impact Eng. 19, 531–570 (1997)CrossRef Reid, S.R., Peng, C.: Dynamic uniaxial crushing of wood. Int. J. Impact Eng. 19, 531–570 (1997)CrossRef
7.
Zurück zum Zitat Wang, L.L., Yang, L.M., Ding, Y.Y.: On the energy conservation and critical velocities for the propagation of a “steady-shock” wave in a bar made of cellular material. Acta Mech. Sin. 29, 420–428 (2013)MathSciNetCrossRefMATH Wang, L.L., Yang, L.M., Ding, Y.Y.: On the energy conservation and critical velocities for the propagation of a “steady-shock” wave in a bar made of cellular material. Acta Mech. Sin. 29, 420–428 (2013)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Harrigan, J.J., Reid, S.R., Tan, P.J., et al.: High rate crushing of wood along the grain. Int. J. Mech. Sci. 47, 521–544 (2005)CrossRef Harrigan, J.J., Reid, S.R., Tan, P.J., et al.: High rate crushing of wood along the grain. Int. J. Mech. Sci. 47, 521–544 (2005)CrossRef
9.
Zurück zum Zitat Pattofatto, S., Elnasri, I., Zhao, H., et al.: Shock enhancement of cellular structures under impact loading: part II analysis. J. Mech. Phys. Solids 55, 2672–2686 (2007)CrossRef Pattofatto, S., Elnasri, I., Zhao, H., et al.: Shock enhancement of cellular structures under impact loading: part II analysis. J. Mech. Phys. Solids 55, 2672–2686 (2007)CrossRef
10.
Zurück zum Zitat Lopatnikov, S.L., Gama, B.A., Haque, M.J., et al.: Dynamics of metal foam deformation during Taylor cylinder–Hopkinson bar impact experiment. Compos. Struct. 61, 61–71 (2003)CrossRef Lopatnikov, S.L., Gama, B.A., Haque, M.J., et al.: Dynamics of metal foam deformation during Taylor cylinder–Hopkinson bar impact experiment. Compos. Struct. 61, 61–71 (2003)CrossRef
11.
Zurück zum Zitat Zheng, Z.J., Wang, C.F., Yu, J.L., et al.: Dynamic stress–strain states for metal foams using a 3D cellular model. J. Mech. Phys. Solids 72, 93–114 (2014)CrossRef Zheng, Z.J., Wang, C.F., Yu, J.L., et al.: Dynamic stress–strain states for metal foams using a 3D cellular model. J. Mech. Phys. Solids 72, 93–114 (2014)CrossRef
12.
Zurück zum Zitat Liao, S.F., Zheng, Z.J., Yu, J.L.: On the local nature of the strain field calculation method for measuring heterogeneous deformation of cellular materials. Int. J. Solids Struct. 51, 478–490 (2014)CrossRef Liao, S.F., Zheng, Z.J., Yu, J.L.: On the local nature of the strain field calculation method for measuring heterogeneous deformation of cellular materials. Int. J. Solids Struct. 51, 478–490 (2014)CrossRef
13.
Zurück zum Zitat Liao, S.F., Zheng, Z.J., Yu, J.L.: Dynamic crushing of 2D cellular structures: local strain field and shock wave velocity. Int. J. Impact Eng. 57, 7–16 (2013)CrossRef Liao, S.F., Zheng, Z.J., Yu, J.L.: Dynamic crushing of 2D cellular structures: local strain field and shock wave velocity. Int. J. Impact Eng. 57, 7–16 (2013)CrossRef
14.
Zurück zum Zitat Barnes, A.T., Ravi-Chandar, K., Kyriakides, S., et al.: Dynamic crushing of aluminum foams: part I—experiments. Int. J. Solids Struct. 51, 1631–1645 (2014)CrossRef Barnes, A.T., Ravi-Chandar, K., Kyriakides, S., et al.: Dynamic crushing of aluminum foams: part I—experiments. Int. J. Solids Struct. 51, 1631–1645 (2014)CrossRef
15.
Zurück zum Zitat Wang, P., Zheng, Z.J., Liao, S.F., et al.: Strain-rate effect on initial crush stress of irregular honeycomb under dynamic loading and its deformation mechanism. Acta Mech. Sin. 34, 117–129 (2018)CrossRef Wang, P., Zheng, Z.J., Liao, S.F., et al.: Strain-rate effect on initial crush stress of irregular honeycomb under dynamic loading and its deformation mechanism. Acta Mech. Sin. 34, 117–129 (2018)CrossRef
16.
Zurück zum Zitat Sun, Y.L., Li, Q.M., McDonald, S.A., et al.: Determination of the constitutive relation and critical condition for the shock compression of cellular solids. Mech. Mater. 99, 26–36 (2016)CrossRef Sun, Y.L., Li, Q.M., McDonald, S.A., et al.: Determination of the constitutive relation and critical condition for the shock compression of cellular solids. Mech. Mater. 99, 26–36 (2016)CrossRef
17.
Zurück zum Zitat Gaitanaros, S., Kyriakides, S.: On the effect of relative density on the crushing and energy absorption of open-cell foams under impact. Int. J. Impact Eng. 82, 3–13 (2015)CrossRef Gaitanaros, S., Kyriakides, S.: On the effect of relative density on the crushing and energy absorption of open-cell foams under impact. Int. J. Impact Eng. 82, 3–13 (2015)CrossRef
18.
Zurück zum Zitat Zou, Z., Reid, S.R., Tan, P.J., et al.: Dynamic crushing of honeycombs and features of shock fronts. Int. J. Impact Eng. 36, 165–176 (2009)CrossRef Zou, Z., Reid, S.R., Tan, P.J., et al.: Dynamic crushing of honeycombs and features of shock fronts. Int. J. Impact Eng. 36, 165–176 (2009)CrossRef
19.
Zurück zum Zitat Ding, Y.Y., Wang, S.L., Zheng, Z.J., et al.: Dynamic crushing of cellular materials: a unique dynamic stress–strain state curve. Mech. Mater. 100, 219–231 (2016)CrossRef Ding, Y.Y., Wang, S.L., Zheng, Z.J., et al.: Dynamic crushing of cellular materials: a unique dynamic stress–strain state curve. Mech. Mater. 100, 219–231 (2016)CrossRef
20.
Zurück zum Zitat Sun, Y.L., Li, Q.M.: Dynamic compressive behaviour of cellular materials: a review of phenomenon, mechanism and modelling. Int. J. Impact Eng. 112, 74–115 (2017)CrossRef Sun, Y.L., Li, Q.M.: Dynamic compressive behaviour of cellular materials: a review of phenomenon, mechanism and modelling. Int. J. Impact Eng. 112, 74–115 (2017)CrossRef
21.
Zurück zum Zitat Wang, S.L., Ding, Y.Y., Wang, C.F., et al.: Dynamic material parameters of closed-cell foams under high-velocity impact. Int. J. Impact Eng. 99, 111–121 (2017)CrossRef Wang, S.L., Ding, Y.Y., Wang, C.F., et al.: Dynamic material parameters of closed-cell foams under high-velocity impact. Int. J. Impact Eng. 99, 111–121 (2017)CrossRef
22.
Zurück zum Zitat Davison, L.: Fundamentals of Shock Wave Propagation in Solids. Springer, Berlin (2008)MATH Davison, L.: Fundamentals of Shock Wave Propagation in Solids. Springer, Berlin (2008)MATH
23.
Zurück zum Zitat Radford, D.D., Deshpande, V.S., Fleck, N.A.: The use of metal foam projectiles to simulate shock loading on a structure. Int. J. Impact Eng. 31, 1152–1171 (2005)CrossRef Radford, D.D., Deshpande, V.S., Fleck, N.A.: The use of metal foam projectiles to simulate shock loading on a structure. Int. J. Impact Eng. 31, 1152–1171 (2005)CrossRef
24.
Zurück zum Zitat Okabe, A., Boots, B., Sugihara, K., et al.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, London (2000)CrossRefMATH Okabe, A., Boots, B., Sugihara, K., et al.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, London (2000)CrossRefMATH
25.
Zurück zum Zitat Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22, 469–483 (1996)MathSciNetCrossRefMATH Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22, 469–483 (1996)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Song, Y.Z., Wang, Z.H., Zhao, L.M., et al.: Dynamic crushing behavior of 3D closed-cell foams based on Voronoi random model. Mater. Des. 31, 4281–4289 (2010)CrossRef Song, Y.Z., Wang, Z.H., Zhao, L.M., et al.: Dynamic crushing behavior of 3D closed-cell foams based on Voronoi random model. Mater. Des. 31, 4281–4289 (2010)CrossRef
27.
Zurück zum Zitat Zhang, X.Y., Tang, L.Q., Liu, Z.J., et al.: Yield properties of closed-cell aluminum foam under triaxial loadings by a 3D Voronoi model. Mech. Mater. 104, 73–84 (2017)CrossRef Zhang, X.Y., Tang, L.Q., Liu, Z.J., et al.: Yield properties of closed-cell aluminum foam under triaxial loadings by a 3D Voronoi model. Mech. Mater. 104, 73–84 (2017)CrossRef
28.
Zurück zum Zitat Li, L., Xue, P., Chen, Y., et al.: Insight into cell size effects on quasi-static and dynamic compressive properties of 3D foams. Mater. Sci. Eng. A Struct. 636, 60–69 (2015)CrossRef Li, L., Xue, P., Chen, Y., et al.: Insight into cell size effects on quasi-static and dynamic compressive properties of 3D foams. Mater. Sci. Eng. A Struct. 636, 60–69 (2015)CrossRef
29.
Zurück zum Zitat Shi, X.P., Liu, S.Y., Nie, H.L., et al.: Study of cell irregularity effects on the compression of closed-cell foams. Int. J. Mech. Sci. 135, 215–225 (2018)CrossRef Shi, X.P., Liu, S.Y., Nie, H.L., et al.: Study of cell irregularity effects on the compression of closed-cell foams. Int. J. Mech. Sci. 135, 215–225 (2018)CrossRef
30.
Zurück zum Zitat ABAQUS, Version 6.11. Abaqus Analysis User’s Manuals, Simulia, Dassault Systmes, Rising Sun Mills, USA ABAQUS, Version 6.11. Abaqus Analysis User’s Manuals, Simulia, Dassault Systmes, Rising Sun Mills, USA
31.
Zurück zum Zitat Harrigan, J.J., Reid, S.R., Yaghoubi, A.S.: The correct analysis of shocks in a cellular material. Int. J. Impact Eng. 37, 918–927 (2010)CrossRef Harrigan, J.J., Reid, S.R., Yaghoubi, A.S.: The correct analysis of shocks in a cellular material. Int. J. Impact Eng. 37, 918–927 (2010)CrossRef
32.
Zurück zum Zitat Wang, L.L.: Foundations of Stress Waves, 2nd edn. National Defense Industry Press, Beijing (2005) Wang, L.L.: Foundations of Stress Waves, 2nd edn. National Defense Industry Press, Beijing (2005)
34.
Zurück zum Zitat Deshpande, V.S., Fleck, N.A.: High strain rate compressive behaviour of aluminium alloy foams. Int. J. Impact Eng. 24, 277–298 (2000)CrossRef Deshpande, V.S., Fleck, N.A.: High strain rate compressive behaviour of aluminium alloy foams. Int. J. Impact Eng. 24, 277–298 (2000)CrossRef
35.
Zurück zum Zitat Mukai, T., Miyoshi, T., Nakano, S., et al.: Compressive response of a closed-cell aluminum foam at high strain rate. Scr. Mater. 54, 533–537 (2006)CrossRef Mukai, T., Miyoshi, T., Nakano, S., et al.: Compressive response of a closed-cell aluminum foam at high strain rate. Scr. Mater. 54, 533–537 (2006)CrossRef
36.
Zurück zum Zitat Wang, L.L., Ding, Y.Y., Yang, L.M.: Experimental investigation on dynamic constitutive behavior of aluminum foams by new inverse methods from wave propagation measurements. Int. J. Impact Eng. 62, 48–59 (2013)CrossRef Wang, L.L., Ding, Y.Y., Yang, L.M.: Experimental investigation on dynamic constitutive behavior of aluminum foams by new inverse methods from wave propagation measurements. Int. J. Impact Eng. 62, 48–59 (2013)CrossRef
37.
Zurück zum Zitat Fang, Q., Zhang, J.H., Zhang, Y.D., et al.: A 3D mesoscopic model for the closed-cell metallic foams subjected to static and dynamic loadings. Int. J. Impact Eng. 82, 103–112 (2015)CrossRef Fang, Q., Zhang, J.H., Zhang, Y.D., et al.: A 3D mesoscopic model for the closed-cell metallic foams subjected to static and dynamic loadings. Int. J. Impact Eng. 82, 103–112 (2015)CrossRef
38.
Zurück zum Zitat Wu, H.X., Liu, Y., Zhang, X.C.: In-plane crushing behavior and energy absorption design of composite honeycombs. Acta Mech. Sin. 34, 1108–1123 (2018)MathSciNetCrossRef Wu, H.X., Liu, Y., Zhang, X.C.: In-plane crushing behavior and energy absorption design of composite honeycombs. Acta Mech. Sin. 34, 1108–1123 (2018)MathSciNetCrossRef
Metadaten
Titel
Dynamic crushing of cellular materials: a particle velocity-based analytical method and its application
verfasst von
Shilong Wang
Zhijun Zheng
Yuanyuan Ding
Changfeng Zhu
Jilin Yu
Publikationsdatum
30.04.2019
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 4/2019
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-019-00859-w

Weitere Artikel der Ausgabe 4/2019

Acta Mechanica Sinica 4/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.