Skip to main content

2015 | OriginalPaper | Buchkapitel

16. Dynamic Enzymatic Kinetic Resolution of NSAIDS

verfasst von : A. H. Kamaruddin, M. H. Uzir, F. N. Gonawan, S. Y. Lau

Erschienen in: Advances in Bioprocess Technology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The optical purity of non-steriodal anti-inflammatory drugs (NSAIDs) is one of the concerns in pharmaceutical industries, since the enantiomers demonstrate distinct physical and chemical characters. The production of single enantiomer of NSAIDs through dynamic enzymatic kinetic resolution (DEKR) has been pinpointed as among the promising approach developed in recent years. The substrate conversion and product enantioselectivity could be improved as compared to the conventional kinetic resolution. A combination of enzymatic kinetic resolution (EKR) and base-catalyzed racemization process can guarantee racemic substrate conversion of more than 80 %. The utilization of hollow-fiber membrane as enzyme-mediated reactor significantly improves the DEKR operation. This chapter describes the DEKR of a racemic ibuprofen in enzymatic membrane reactor (EMR), which system has been intensively investigated. From the experimental work, high conversion of the substrate (>90 %) and opticaly pure product (ee P  > 95 %) have been obtained. The kinetic model was integrated with that of the mass transfer in the cylindrical hollow-fiber module in order to simulating the entire system by the interaction between the EKR and racemization reaction. The product ((S)-ibuprofen acid) was crystallized and the preliminary toxicity studies were carried out. In conclusion, DEKR of NSAIDs is a promising technology for the production a single enantiomer of NSAIDs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Battistel, E., Bianchi, D., Cesti, P., & Pina, C. (1991). Enzymatic resolution of (S)-(+)-naproxen in a continuous reactor. Biotechnology and Bioengineering, 38(6), 659–664. doi:10.1002/bit.260380611.CrossRef Battistel, E., Bianchi, D., Cesti, P., & Pina, C. (1991). Enzymatic resolution of (S)-(+)-naproxen in a continuous reactor. Biotechnology and Bioengineering, 38(6), 659–664. doi:10.​1002/​bit.​260380611.CrossRef
Zurück zum Zitat Bhandarkar, S. V., & Neau, S. H. (2000). Lipase-catalyzed enantioselective esterification of flurbiprofen with n-butanol. Electronic Journal of Biotechnology, 3(3), 1–7. doi:10.2225/vol3-issue3-fulltext-3. Bhandarkar, S. V., & Neau, S. H. (2000). Lipase-catalyzed enantioselective esterification of flurbiprofen with n-butanol. Electronic Journal of Biotechnology, 3(3), 1–7. doi:10.​2225/​vol3-issue3-fulltext-3.
Zurück zum Zitat Brady, D., Steenkamp, L., Skein, E., Chaplin, J. A., & Reddy, S. (2004). Optimisation of the enantioselective biocatalytic hydrolysis of naproxen ethyl ester using ChiroCLEC-CR. Enzyme and Microbial Technology, 34(3–4), 283–291. doi:10.1016/j.enzmictec.2003.11.002.CrossRef Brady, D., Steenkamp, L., Skein, E., Chaplin, J. A., & Reddy, S. (2004). Optimisation of the enantioselective biocatalytic hydrolysis of naproxen ethyl ester using ChiroCLEC-CR. Enzyme and Microbial Technology, 34(3–4), 283–291. doi:10.​1016/​j.​enzmictec.​2003.​11.​002.CrossRef
Zurück zum Zitat Carnell, A. (1999). Stereoinversions using microbial redox-reactions. In K. Faber (Ed.), Biotransformations (Advances in Biochemical Engineering/Biotechnology, Vol. 63, pp. 57–72). Berlin: Springer. 10.1007/3-540-69791-8_3.CrossRef Carnell, A. (1999). Stereoinversions using microbial redox-reactions. In K. Faber (Ed.), Biotransformations (Advances in Biochemical Engineering/Biotechnology, Vol. 63, pp. 57–72). Berlin: Springer. 10.1007/3-540-69791-8_3.CrossRef
Zurück zum Zitat Chang, C.-S., Tsai, S.-W., & Lin, C.-N. (1998). Enzymatic resolution of (RS)-2-arylpropionic acid thioesters by Candida rugosa lipase-catalyzed thiotransesterification or hydrolysis in organic solvents. Tetrahedron: Asymmetry, 9(16), 2799–2807. doi:10.1016/S0957-4166(98)00296-1.CrossRef Chang, C.-S., Tsai, S.-W., & Lin, C.-N. (1998). Enzymatic resolution of (RS)-2-arylpropionic acid thioesters by Candida rugosa lipase-catalyzed thiotransesterification or hydrolysis in organic solvents. Tetrahedron: Asymmetry, 9(16), 2799–2807. doi:10.​1016/​S0957-4166(98)00296-1.CrossRef
Zurück zum Zitat Contesini, F. J., Lopes, D. B., Macedo, G. A., Nascimento, M. G., & Carvalho, P. O. (2010). Aspergillus sp. lipase: Potential biocatalyst for industrial use. Journal of Molecular Catalysis B: Enzymatic, 67(3–4), 163–171. doi:10.1016/j.molcatb.2010.07.021.CrossRef Contesini, F. J., Lopes, D. B., Macedo, G. A., Nascimento, M. G., & Carvalho, P. O. (2010). Aspergillus sp. lipase: Potential biocatalyst for industrial use. Journal of Molecular Catalysis B: Enzymatic, 67(3–4), 163–171. doi:10.​1016/​j.​molcatb.​2010.​07.​021.CrossRef
Zurück zum Zitat Ducret, A., Trani, M., & Lortie, R. (1998). Lipase-catalyzed enantioselective esterification of ibuprofen in organic solvents under controlled water activity. Enzyme and Microbial Technology, 22(4), 212–216. doi:10.1016/S0141-0229(97)00180-4.CrossRef Ducret, A., Trani, M., & Lortie, R. (1998). Lipase-catalyzed enantioselective esterification of ibuprofen in organic solvents under controlled water activity. Enzyme and Microbial Technology, 22(4), 212–216. doi:10.​1016/​S0141-0229(97)00180-4.CrossRef
Zurück zum Zitat Ebbers, E. J., Ariaans, G. J. A., Houbiers, J. P. M., Bruggink, A., & Zwanenburg, B. (1997). Controlled racemization of optically active organic compounds: Prospects for asymmetric transformation. Tetrahedron, 53(28), 9417–9476. doi:10.1016/S0040-4020(97)00324-4.CrossRef Ebbers, E. J., Ariaans, G. J. A., Houbiers, J. P. M., Bruggink, A., & Zwanenburg, B. (1997). Controlled racemization of optically active organic compounds: Prospects for asymmetric transformation. Tetrahedron, 53(28), 9417–9476. doi:10.​1016/​S0040-4020(97)00324-4.CrossRef
Zurück zum Zitat Effenberger, F., Graef, B. W., & Oßwald, S. (1997). Preparation of (S)-naproxen by enantioselective hydrolysis of racemic naproxen amide with resting cells of Rhodococcus erythropolis MP50 in organic solvents. Tetrahedron: Asymmetry, 8(16), 2749–2755. doi:10.1016/S0957-4166(97)00335-2.CrossRef Effenberger, F., Graef, B. W., & Oßwald, S. (1997). Preparation of (S)-naproxen by enantioselective hydrolysis of racemic naproxen amide with resting cells of Rhodococcus erythropolis MP50 in organic solvents. Tetrahedron: Asymmetry, 8(16), 2749–2755. doi:10.​1016/​S0957-4166(97)00335-2.CrossRef
Zurück zum Zitat Fazlena, H. (2005). Chemoenzymatic dynamic kinetic resolution of ethoxyethyl ibuprofen ester. Penang: Universiti Sains malaysia. Fazlena, H. (2005). Chemoenzymatic dynamic kinetic resolution of ethoxyethyl ibuprofen ester. Penang: Universiti Sains malaysia.
Zurück zum Zitat Fazlena, H., Kamaruddin, A. H., & Zulkali, M. M. D. (2006). Dynamic kinetic resolution: alternative approach in optimizing S-ibuprofen production. Bioprocess and Biosystems Engineering, 28(4), 227–233. doi:10.1007/s00449-005-0024-1.CrossRef Fazlena, H., Kamaruddin, A. H., & Zulkali, M. M. D. (2006). Dynamic kinetic resolution: alternative approach in optimizing S-ibuprofen production. Bioprocess and Biosystems Engineering, 28(4), 227–233. doi:10.​1007/​s00449-005-0024-1.CrossRef
Zurück zum Zitat Fu, B., & Vasudevan, P. T. (2010). Effect of solvent − Co-solvent mixtures on lipase-catalyzed transesterification of canola oil. Energy & Fuels, 24(9), 4646–4651. doi:10.1021/ef901176h.CrossRef Fu, B., & Vasudevan, P. T. (2010). Effect of solvent − Co-solvent mixtures on lipase-catalyzed transesterification of canola oil. Energy & Fuels, 24(9), 4646–4651. doi:10.​1021/​ef901176h.CrossRef
Zurück zum Zitat Ghanem, A., Aboul-Enein, M. N., El-Azzouny, A., & El-Behairy, M. F. (2010). Lipase-mediated enantioselective kinetic resolution of racemic acidic drugs in non-standard organic solvents: Direct chiral liquid chromatography monitoring and accurate determination of the enantiomeric excesses. Journal of Chromatography A, 1217(7), 1063–1074. doi:10.1016/j.chroma.2009.10.080.CrossRef Ghanem, A., Aboul-Enein, M. N., El-Azzouny, A., & El-Behairy, M. F. (2010). Lipase-mediated enantioselective kinetic resolution of racemic acidic drugs in non-standard organic solvents: Direct chiral liquid chromatography monitoring and accurate determination of the enantiomeric excesses. Journal of Chromatography A, 1217(7), 1063–1074. doi:10.​1016/​j.​chroma.​2009.​10.​080.CrossRef
Zurück zum Zitat Gonawan, F. N., Sie Yon, L., Kamaruddin, A. H., & Uzir, M. H. (2013a). Rapid base-catalyzed racemization of (R)-ibuprofen ester in isooctane–dimethyl sulfoxide medium with improved kinetic model. Industrial & Engineering Chemistry Research, 53(2), 635–642. doi:10.1021/ie403070u.CrossRef Gonawan, F. N., Sie Yon, L., Kamaruddin, A. H., & Uzir, M. H. (2013a). Rapid base-catalyzed racemization of (R)-ibuprofen ester in isooctane–dimethyl sulfoxide medium with improved kinetic model. Industrial & Engineering Chemistry Research, 53(2), 635–642. doi:10.​1021/​ie403070u.CrossRef
Zurück zum Zitat Gonawan, F. N., Yon, L. S., Kamaruddin, A. H., & Uzir, M. H. (2013b). Effect of co-solvent addition on the reaction kinetics of the lipase-catalyzed resolution of ibuprofen ester. Journal of Chemical Technology & Biotechnology, 88(4), 672–679. doi:10.1002/jctb.3885.CrossRef Gonawan, F. N., Yon, L. S., Kamaruddin, A. H., & Uzir, M. H. (2013b). Effect of co-solvent addition on the reaction kinetics of the lipase-catalyzed resolution of ibuprofen ester. Journal of Chemical Technology & Biotechnology, 88(4), 672–679. doi:10.​1002/​jctb.​3885.CrossRef
Zurück zum Zitat Gyo Lee, E., Soon Won, H., & Hyun Chung, B. (2001). Enantioselective hydrolysis of racemic naproxen methyl ester by two-step acetone-treated Candida rugosa lipase. Process Biochemistry, 37(3), 293–298. doi:10.1016/S0032-9592(01)00213-8.CrossRef Gyo Lee, E., Soon Won, H., & Hyun Chung, B. (2001). Enantioselective hydrolysis of racemic naproxen methyl ester by two-step acetone-treated Candida rugosa lipase. Process Biochemistry, 37(3), 293–298. doi:10.​1016/​S0032-9592(01)00213-8.CrossRef
Zurück zum Zitat Hu, Y., Wang, Y., Luo, G., & Dai, Y. (2008). Modeling of a biphasic membrane reactor catalyzed by lipase immobilized in a hydrophilic/hydrophobic composite membrane. Journal of Membrane Science, 308(1–2), 242–249. doi:10.1016/j.memsci.2007.09.064.CrossRef Hu, Y., Wang, Y., Luo, G., & Dai, Y. (2008). Modeling of a biphasic membrane reactor catalyzed by lipase immobilized in a hydrophilic/hydrophobic composite membrane. Journal of Membrane Science, 308(1–2), 242–249. doi:10.​1016/​j.​memsci.​2007.​09.​064.CrossRef
Zurück zum Zitat Ikeda, Y., & Kurokawa, Y. (2002). Enantioselective esterification of racemic ibuprofen in isooctane by immobilized lipase on cellulose acetate-titanium iso-propoxide gel fiber. Journal of Bioscience and Bioengineering, 93(1), 98–100. doi:10.1016/S1389-1723(02)80062-7.CrossRef Ikeda, Y., & Kurokawa, Y. (2002). Enantioselective esterification of racemic ibuprofen in isooctane by immobilized lipase on cellulose acetate-titanium iso-propoxide gel fiber. Journal of Bioscience and Bioengineering, 93(1), 98–100. doi:10.​1016/​S1389-1723(02)80062-7.CrossRef
Zurück zum Zitat Johnson, A., Zawadzka, A., Deobald, L., Crawford, R., & Paszczynski, A. (2008). Novel method for immobilization of enzymes to magnetic nanoparticles. Journal of Nanoparticle Research, 10(6), 1009–1025. doi:10.1007/s11051-007-9332-5.CrossRef Johnson, A., Zawadzka, A., Deobald, L., Crawford, R., & Paszczynski, A. (2008). Novel method for immobilization of enzymes to magnetic nanoparticles. Journal of Nanoparticle Research, 10(6), 1009–1025. doi:10.​1007/​s11051-007-9332-5.CrossRef
Zurück zum Zitat Kin, M. G., & Lee, S. B. (1996). Enzymatic resolution of racemic ibuprofen by lipase-catalyzed esterification reaction: Effects of water content and solid supports. Journal of Fermentation and Bioengineering, 81(3), 269–271. doi:10.1016/0922-338X(96)82221-5.CrossRef Kin, M. G., & Lee, S. B. (1996). Enzymatic resolution of racemic ibuprofen by lipase-catalyzed esterification reaction: Effects of water content and solid supports. Journal of Fermentation and Bioengineering, 81(3), 269–271. doi:10.​1016/​0922-338X(96)82221-5.CrossRef
Zurück zum Zitat Kim, M. G., Lee, E. G., & Chung, B. H. (2000). Improved enantioselectivity of Candida rugosa lipase towards ketoprofen ethyl ester by a simple two-step treatment. Process Biochemistry, 35(9), 977–982. doi:10.1016/S0032-9592(00)00129-1.CrossRef Kim, M. G., Lee, E. G., & Chung, B. H. (2000). Improved enantioselectivity of Candida rugosa lipase towards ketoprofen ethyl ester by a simple two-step treatment. Process Biochemistry, 35(9), 977–982. doi:10.​1016/​S0032-9592(00)00129-1.CrossRef
Zurück zum Zitat Knoche, B., & Blaschke, G. (1994). Investigations on the in vitro racemization of thalidomide by high-performance liquid chromatography. Journal of Chromatography A, 666(1–2), 235–240. doi:10.1016/0021-9673(94)80385-4.CrossRef Knoche, B., & Blaschke, G. (1994). Investigations on the in vitro racemization of thalidomide by high-performance liquid chromatography. Journal of Chromatography A, 666(1–2), 235–240. doi:10.​1016/​0021-9673(94)80385-4.CrossRef
Zurück zum Zitat Long, W. S., Bhatia, S., & Kamaruddin, A. (2003). Modeling and simulation of enzymatic membrane reactor for kinetic resolution of ibuprofen ester. Journal of Membrane Science, 219(1–2), 69–88. doi:10.1016/S0376-7388(03)00181-9.CrossRef Long, W. S., Bhatia, S., & Kamaruddin, A. (2003). Modeling and simulation of enzymatic membrane reactor for kinetic resolution of ibuprofen ester. Journal of Membrane Science, 219(1–2), 69–88. doi:10.​1016/​S0376-7388(03)00181-9.CrossRef
Zurück zum Zitat Lau, S. Y., Gonawan, F. N., Bhatia, S., Kamaruddin, A. H., & Uzir, M. H. (2011). Conceptual design and simulation of a plant for the production of high purity (S)-ibuprofen acid using innovative enzymatic membrane technology. Chemical Engineering Journal, 166(2), 726–737. doi:10.1016/j.cej.2010.11.072.CrossRef Lau, S. Y., Gonawan, F. N., Bhatia, S., Kamaruddin, A. H., & Uzir, M. H. (2011). Conceptual design and simulation of a plant for the production of high purity (S)-ibuprofen acid using innovative enzymatic membrane technology. Chemical Engineering Journal, 166(2), 726–737. doi:10.​1016/​j.​cej.​2010.​11.​072.CrossRef
Zurück zum Zitat Lau, S. Y. (2013). Dynamic kinetic resolution of (R, S)-ibuprofen ester in an enzymatic hollow fiber membrane reactor system: Process design, modeling and simulation studies. Penang: Universiti Sains Malaysia. Lau, S. Y. (2013). Dynamic kinetic resolution of (R, S)-ibuprofen ester in an enzymatic hollow fiber membrane reactor system: Process design, modeling and simulation studies. Penang: Universiti Sains Malaysia.
Zurück zum Zitat Lau, S. Y., Uzir, M. H., Kamaruddin, A. H., & Bhatia, S. (2010). Lipase-catalyzed dynamic kinetic resolution of racemic ibuprofen ester via hollow fiber membrane reactor: Modeling and simulation. Journal of Membrane Science, 357(1–2), 109–121. doi:10.1016/j.memsci.2010.04.008.CrossRef Lau, S. Y., Uzir, M. H., Kamaruddin, A. H., & Bhatia, S. (2010). Lipase-catalyzed dynamic kinetic resolution of racemic ibuprofen ester via hollow fiber membrane reactor: Modeling and simulation. Journal of Membrane Science, 357(1–2), 109–121. doi:10.​1016/​j.​memsci.​2010.​04.​008.CrossRef
Zurück zum Zitat Liu, Y.-Y., Xu, J.-H., Wu, H.-Y., & Shen, D. (2004). Integration of purification with immobilization of Candida rugosa lipase for kinetic resolution of racemic ketoprofen. Journal of Biotechnology, 110(2), 209–217. doi:10.1016/j.jbiotec.2004.02.008.CrossRef Liu, Y.-Y., Xu, J.-H., Wu, H.-Y., & Shen, D. (2004). Integration of purification with immobilization of Candida rugosa lipase for kinetic resolution of racemic ketoprofen. Journal of Biotechnology, 110(2), 209–217. doi:10.​1016/​j.​jbiotec.​2004.​02.​008.CrossRef
Zurück zum Zitat Madhav, M. V., & Ching, C. B. (2001). Study on the enzymatic hydrolysis of racemic methyl ibuprofen ester. Journal of Chemical Technology & Biotechnology, 76(9), 941–948. doi:10.1002/jctb.466.CrossRef Madhav, M. V., & Ching, C. B. (2001). Study on the enzymatic hydrolysis of racemic methyl ibuprofen ester. Journal of Chemical Technology & Biotechnology, 76(9), 941–948. doi:10.​1002/​jctb.​466.CrossRef
Zurück zum Zitat Mehvar, R., & Brocks, D. R. (2001). Stereospecific pharmacokinetics and pharmacodynamics of beta-adrenergic blockers in humans. Journal of Pharmacy and Pharmaceutical Sciences, 4(2), 185–200. Mehvar, R., & Brocks, D. R. (2001). Stereospecific pharmacokinetics and pharmacodynamics of beta-adrenergic blockers in humans. Journal of Pharmacy and Pharmaceutical Sciences, 4(2), 185–200.
Zurück zum Zitat Morrone, R., Nicolosi, G., Patti, A., & Piattelli, M. (1995). Resolution of racemic flurbiprofen by lipase-mediated esterification in organic solvent. Tetrahedron: Asymmetry, 6(7), 1773–1778. doi:10.1016/0957-4166(95)00223-C.CrossRef Morrone, R., Nicolosi, G., Patti, A., & Piattelli, M. (1995). Resolution of racemic flurbiprofen by lipase-mediated esterification in organic solvent. Tetrahedron: Asymmetry, 6(7), 1773–1778. doi:10.​1016/​0957-4166(95)00223-C.CrossRef
Zurück zum Zitat Muralidhar, R. V., Marchant, R., & Nigam, P. (2001). Lipases in racemic resolutions. Journal of Chemical Technology and Biotechnology, 76(1), 3–8. 10.1002/1097-4660(200101)76:1<3::AID-JCTB336>3.0.CO;2-8.CrossRef Muralidhar, R. V., Marchant, R., & Nigam, P. (2001). Lipases in racemic resolutions. Journal of Chemical Technology and Biotechnology, 76(1), 3–8. 10.1002/1097-4660(200101)76:1<3::AID-JCTB336>3.0.CO;2-8.CrossRef
Zurück zum Zitat Patel, R. N. (Ed.). (2006). Biocatalysis in the pharmaceutical and biotechnology industries. A biocatalysis for synthesis for chiral pharmaceutical intermediates (1st ed.). New York, NY: CRC Press. Patel, R. N. (Ed.). (2006). Biocatalysis in the pharmaceutical and biotechnology industries. A biocatalysis for synthesis for chiral pharmaceutical intermediates (1st ed.). New York, NY: CRC Press.
Zurück zum Zitat Perry, R. H., & Green, D. W. (1997). Perry’s chemical engineers’ handbook. Heat and mass transfer (7th ed.). New York, NY: Mc-Graw Hill. Perry, R. H., & Green, D. W. (1997). Perry’s chemical engineers’ handbook. Heat and mass transfer (7th ed.). New York, NY: Mc-Graw Hill.
Zurück zum Zitat Shah, R. R., & Branch, S. K. (2003). Regulatory Requirements for the Development of Chirally Active Drugs. In M. Eichelbaum, B. Testa, & A. Somogyi (Eds.), Stereochemical aspects of drug action and disposition. Handbook of experimental pharmacology (Vol. 153, pp. 379–399). Berlin: Springer. doi:10.1007/978-3-642-55842-9_16.CrossRef Shah, R. R., & Branch, S. K. (2003). Regulatory Requirements for the Development of Chirally Active Drugs. In M. Eichelbaum, B. Testa, & A. Somogyi (Eds.), Stereochemical aspects of drug action and disposition. Handbook of experimental pharmacology (Vol. 153, pp. 379–399). Berlin: Springer. doi:10.​1007/​978-3-642-55842-9_​16.CrossRef
Zurück zum Zitat Sie Yon, L., Gonawan, F. N., Kamaruddin, A. H., & Uzir, M. H. (2013). Enzymatic deracemization of (R, S)-ibuprofen ester via lipase-catalyzed membrane reactor. Industrial & Engineering Chemistry Research, 52(27), 9441–9453. doi:10.1021/ie400795j.CrossRef Sie Yon, L., Gonawan, F. N., Kamaruddin, A. H., & Uzir, M. H. (2013). Enzymatic deracemization of (R, S)-ibuprofen ester via lipase-catalyzed membrane reactor. Industrial & Engineering Chemistry Research, 52(27), 9441–9453. doi:10.​1021/​ie400795j.CrossRef
Zurück zum Zitat Steinreiber, J., Faber, K., & Griengl, H. (2008). De-racemization of enantiomers versus de-epimerization of diastereomers—Classification of dynamic kinetic asymmetric transformations (DYKAT). Chemistry – A European Journal, 14(27), 8060–8072. doi:10.1002/chem.200701643.CrossRef Steinreiber, J., Faber, K., & Griengl, H. (2008). De-racemization of enantiomers versus de-epimerization of diastereomers—Classification of dynamic kinetic asymmetric transformations (DYKAT). Chemistry – A European Journal, 14(27), 8060–8072. doi:10.​1002/​chem.​200701643.CrossRef
Zurück zum Zitat Stoschitzky, K., & Lindner, W. (1990). Lindner W (1990) [Specific and nonspecific effects of beta receptor blockers: stereoselectively different properties exemplified by (R)- and (S)-propranolol]. Wiener Medizinische Wochenschrift, 140(6-7), 156–162. Stoschitzky, K., & Lindner, W. (1990). Lindner W (1990) [Specific and nonspecific effects of beta receptor blockers: stereoselectively different properties exemplified by (R)- and (S)-propranolol]. Wiener Medizinische Wochenschrift, 140(6-7), 156–162.
Zurück zum Zitat Wang, L. W., Cheng, Y. C., & Tsai, S. W. (2004). Process modeling of the lipase-catalyzed dynamic kinetic resolution of (R, S)-suprofen 2,2,2-trifluoroethyl thioester in a hollow-fiber membrane. Bioprocess and Biosystems Engineering, 27(1), 39–49. doi:10.1007/s00449-004-0379-8.CrossRef Wang, L. W., Cheng, Y. C., & Tsai, S. W. (2004). Process modeling of the lipase-catalyzed dynamic kinetic resolution of (R, S)-suprofen 2,2,2-trifluoroethyl thioester in a hollow-fiber membrane. Bioprocess and Biosystems Engineering, 27(1), 39–49. doi:10.​1007/​s00449-004-0379-8.CrossRef
Zurück zum Zitat Wang, S.-Z., Wu, J.-P., Xu, G., & Yang, L.-R. (2013). Chemo-enzymatic asymmetric synthesis of S-citalopram by lipase-catalyzed cyclic resolution and stereoinversion of quaternary stereogenic center. Bioprocess and Biosystems Engineering, 36(8), 1031–1037. doi:10.1007/s00449-012-0855-5.CrossRef Wang, S.-Z., Wu, J.-P., Xu, G., & Yang, L.-R. (2013). Chemo-enzymatic asymmetric synthesis of S-citalopram by lipase-catalyzed cyclic resolution and stereoinversion of quaternary stereogenic center. Bioprocess and Biosystems Engineering, 36(8), 1031–1037. doi:10.​1007/​s00449-012-0855-5.CrossRef
Zurück zum Zitat Wiberg, E., & Wiberg, N. (Eds.). (2001). Inorganic chemistry. Stereochemistry of molecules (35th ed.). Academic Press: Florida. Wiberg, E., & Wiberg, N. (Eds.). (2001). Inorganic chemistry. Stereochemistry of molecules (35th ed.). Academic Press: Florida.
Zurück zum Zitat Xin, J.-Y., Li, S.-B., Chen, X.-H., Wang, L.-L., & Xu, Y. (2000). Improvement of the enantioselectivity of lipase-catalyzed naproxen ester hydrolysis in organic solvent. Enzyme and Microbial Technology, 26(2–4), 137–141. doi:10.1016/S0141-0229(99)00147-7.CrossRef Xin, J.-Y., Li, S.-B., Chen, X.-H., Wang, L.-L., & Xu, Y. (2000). Improvement of the enantioselectivity of lipase-catalyzed naproxen ester hydrolysis in organic solvent. Enzyme and Microbial Technology, 26(2–4), 137–141. doi:10.​1016/​S0141-0229(99)00147-7.CrossRef
Zurück zum Zitat Xin, J.-Y., Li S-b, S., Xu, Y., & Chui, C.-g. (2001). Dynamic enzymatic resolution of Naproxen methyl ester in a membrane bioreactor. Journal of Chemical Technology & Biotechnology, 76(6), 579–585. doi:10.1002/jctb.413.CrossRef Xin, J.-Y., Li S-b, S., Xu, Y., & Chui, C.-g. (2001). Dynamic enzymatic resolution of Naproxen methyl ester in a membrane bioreactor. Journal of Chemical Technology & Biotechnology, 76(6), 579–585. doi:10.​1002/​jctb.​413.CrossRef
Metadaten
Titel
Dynamic Enzymatic Kinetic Resolution of NSAIDS
verfasst von
A. H. Kamaruddin
M. H. Uzir
F. N. Gonawan
S. Y. Lau
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-17915-5_16