Skip to main content
Erschienen in: Journal of Materials Science 18/2022

03.01.2022 | Advanced Nanomaterials

Dynamic mechanical behavior and microstructural evolution of additively manufactured 316L stainless steel

verfasst von: Hongyu Yu, Rong Chen, Wenyang Liu, Simeng Li, Ling Chen, Shujuan Hou

Erschienen in: Journal of Materials Science | Ausgabe 18/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The high strain rate dynamic behavior of additively manufactured (AM) 316L stainless steel (SS) is investigated, and a dynamic deformation-induced microstructural evolution is examined in this study. First, the as-built microstructure feature is characterized. The grain morphology is revealed to be location-dependent and driven by the solidification process. A steep rise in the point-to-origin misorientation profile traversing a melt pool boundary is observed, quantitatively describing the influence of process-induced interface on the initial grain orientation state. The static and dynamic mechanical properties are then examined. Compared with conventional wrought 316L SS, AM 316L SS demonstrates an enhanced mechanical strength under quasi-static compression (with a \({\sim }\,95\%\) increase in yield strength). Under dynamic shearing, strain rate-induced strength enhancement is observed in wrought 316L SS (with a \({\sim }\,47\%\) increase in dynamic flow stress); AM 316L SS nevertheless demonstrates nearly rate-insensitive responses in its yield stress (with a \({\sim }\,5\%\) increase in dynamic flow stress). Localized deformation in the form of an adiabatic shear band and the associated structural evolution are analyzed. Radical changes in crystallographic and structural features induced by high strain rate deformation are observed. Grain deformation and rotation lead to a remarkable difference in the grain orientation and spatial direction from the starting state driven by the solidification process. Upon dynamic shearing, the transmission of localized plastic deformation across melt pools is revealed, and the indication in grain rotations is discussed. The change in the geometrically necessary dislocation density is examined, hinting at the competition of the dislocation multiplication and annihilation under localized deformation. The current work enriches the understanding of the dynamic mechanical properties of AM materials at high strain rates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Haghdadi N, Laleh M, Moyle M, Primig S (2021) Additive manufacturing of steels: a review of achievements and challenges. J Mater Sci 56(1):64–107CrossRef Haghdadi N, Laleh M, Moyle M, Primig S (2021) Additive manufacturing of steels: a review of achievements and challenges. J Mater Sci 56(1):64–107CrossRef
2.
Zurück zum Zitat DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid A, De A, Zhang W (2018) Additive manufacturing of metallic components - process, structure and properties. Prog Mater Sci 92:112–224CrossRef DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid A, De A, Zhang W (2018) Additive manufacturing of metallic components - process, structure and properties. Prog Mater Sci 92:112–224CrossRef
3.
Zurück zum Zitat Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371–392CrossRef Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371–392CrossRef
4.
Zurück zum Zitat Thompson MK, Moroni G, Vaneker T, Fadel G, Campbell RI, Gibson I, Bernard A, Schulz J, Graf P, Ahuja B, Martina F (2016) Design for additive manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann 65(2):737–760CrossRef Thompson MK, Moroni G, Vaneker T, Fadel G, Campbell RI, Gibson I, Bernard A, Schulz J, Graf P, Ahuja B, Martina F (2016) Design for additive manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann 65(2):737–760CrossRef
5.
Zurück zum Zitat Wu M-W, Lai P-H, Chen J-K (2016) Anisotropy in the impact toughness of selective laser melted Ti-6Al-4V alloy. Mater Sci Eng A 650:295–299CrossRef Wu M-W, Lai P-H, Chen J-K (2016) Anisotropy in the impact toughness of selective laser melted Ti-6Al-4V alloy. Mater Sci Eng A 650:295–299CrossRef
6.
Zurück zum Zitat Simson T, Emmel A, Dwars A, Bühm J (2017) Residual stress measurements on AISI 316L samples manufactured by selective laser melting. Addit Manuf 17:183–189 Simson T, Emmel A, Dwars A, Bühm J (2017) Residual stress measurements on AISI 316L samples manufactured by selective laser melting. Addit Manuf 17:183–189
7.
Zurück zum Zitat Chauvet E, Kontis P, Jägle EA, Gault B, Raabe D, Tassin C, Blandin J-J, Dendievel R, Vayre B, Abed S, Martin G (2018) Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron beam melting. Acta Mater 142:82–94CrossRef Chauvet E, Kontis P, Jägle EA, Gault B, Raabe D, Tassin C, Blandin J-J, Dendievel R, Vayre B, Abed S, Martin G (2018) Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron beam melting. Acta Mater 142:82–94CrossRef
8.
Zurück zum Zitat Yue H, Peng H, Li R, Qi K, Zhang L, Lin J, Su Y (2021) Effect of heat treatment on the microstructure and anisotropy of tensile properties of TiAl alloy produced via selective electron beam melting. Mater Sci Eng A 803:140473CrossRef Yue H, Peng H, Li R, Qi K, Zhang L, Lin J, Su Y (2021) Effect of heat treatment on the microstructure and anisotropy of tensile properties of TiAl alloy produced via selective electron beam melting. Mater Sci Eng A 803:140473CrossRef
9.
Zurück zum Zitat Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Additive manufacturing (3d printing): A review of materials, methods, applications and challenges. Compos B Eng 143:172–196CrossRef Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Additive manufacturing (3d printing): A review of materials, methods, applications and challenges. Compos B Eng 143:172–196CrossRef
10.
Zurück zum Zitat Smith TR, Sugar JD, San Marchi C, Schoenung JM (2019) Strengthening mechanisms in directed energy deposited austenitic stainless steel. Acta Mater 164:728–740CrossRef Smith TR, Sugar JD, San Marchi C, Schoenung JM (2019) Strengthening mechanisms in directed energy deposited austenitic stainless steel. Acta Mater 164:728–740CrossRef
11.
Zurück zum Zitat Wang X, He X, Wang T, Li Y (2020) The influence of the microtexture and orientation of columnar grains on the fatigue crack growth of directed energy deposited Ti-6.5Al-2Zr-Mo-V alloys. Addit Manuf 35:101174 Wang X, He X, Wang T, Li Y (2020) The influence of the microtexture and orientation of columnar grains on the fatigue crack growth of directed energy deposited Ti-6.5Al-2Zr-Mo-V alloys. Addit Manuf 35:101174
12.
Zurück zum Zitat Tofail SAM, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C (2018) Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today 21(1):22–37CrossRef Tofail SAM, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C (2018) Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today 21(1):22–37CrossRef
13.
Zurück zum Zitat Kok Y, Tan XP, Wang P, Nai MLS, Loh NH, Liu E, Tor SB (2018) Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review. Mater Des 139:565–586CrossRef Kok Y, Tan XP, Wang P, Nai MLS, Loh NH, Liu E, Tor SB (2018) Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review. Mater Des 139:565–586CrossRef
14.
Zurück zum Zitat Zheng B, Haley JC, Yang N, Yee J, Terrassa KW, Zhou Y, Lavernia EJ, Schoenung JM (2019) On the evolution of microstructure and defect control in 316L SS components fabricated via directed energy deposition. Mater Sci Eng A 764:138243CrossRef Zheng B, Haley JC, Yang N, Yee J, Terrassa KW, Zhou Y, Lavernia EJ, Schoenung JM (2019) On the evolution of microstructure and defect control in 316L SS components fabricated via directed energy deposition. Mater Sci Eng A 764:138243CrossRef
15.
Zurück zum Zitat Polonsky AT, Lenthe WC, Echlin MP, Livescu V, Gray GT, Pollock TM (2020) Solidification-driven orientation gradients in additively manufactured stainless steel. Acta Mater 183:249–260CrossRef Polonsky AT, Lenthe WC, Echlin MP, Livescu V, Gray GT, Pollock TM (2020) Solidification-driven orientation gradients in additively manufactured stainless steel. Acta Mater 183:249–260CrossRef
16.
Zurück zum Zitat Melia MA, Carroll JD, Whetten SR, Esmaeely SN, Locke J, White E, Anderson I, Chandross M, Michael JR, Argibay N, Schindelholz EJ, Kustas AB (2019) Mechanical and corrosion properties of additively manufactured cocrfemnni high entropy alloy. Addit Manuf 29:100833 Melia MA, Carroll JD, Whetten SR, Esmaeely SN, Locke J, White E, Anderson I, Chandross M, Michael JR, Argibay N, Schindelholz EJ, Kustas AB (2019) Mechanical and corrosion properties of additively manufactured cocrfemnni high entropy alloy. Addit Manuf 29:100833
17.
Zurück zum Zitat Pham MS, Dovgyy B, Hooper PA (2017) Twinning induced plasticity in austenitic stainless steel 316L made by additive manufacturing. Mater Sci Eng A 704:102–111CrossRef Pham MS, Dovgyy B, Hooper PA (2017) Twinning induced plasticity in austenitic stainless steel 316L made by additive manufacturing. Mater Sci Eng A 704:102–111CrossRef
18.
Zurück zum Zitat Suryawanshi J, Prashanth KG, Scudino S, Eckert J, Prakash O, Ramamurty U (2016) Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting. Acta Mater 115:285–294CrossRef Suryawanshi J, Prashanth KG, Scudino S, Eckert J, Prakash O, Ramamurty U (2016) Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting. Acta Mater 115:285–294CrossRef
19.
Zurück zum Zitat Wang Z, Palmer TA, Beese AM (2016) Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing. Acta Mater 110:226–235CrossRef Wang Z, Palmer TA, Beese AM (2016) Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing. Acta Mater 110:226–235CrossRef
20.
Zurück zum Zitat Gorsse S, Hutchinson C, Gouné M, Banerjee R (2017) Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Sci Technol Adv Mater 18(3):584–610CrossRef Gorsse S, Hutchinson C, Gouné M, Banerjee R (2017) Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Sci Technol Adv Mater 18(3):584–610CrossRef
21.
Zurück zum Zitat Arriaga M, Waisman H (2017) Combined stability analysis of phase-field dynamic fracture and shear band localization. Int J Plast 96:81–119CrossRef Arriaga M, Waisman H (2017) Combined stability analysis of phase-field dynamic fracture and shear band localization. Int J Plast 96:81–119CrossRef
22.
Zurück zum Zitat Xu Z, He X, Han Y, Huang F (2020) A different viewpoint on mechanism of fracture to shear-banding failure mode transition. J Mech Phys Solids 145:104165CrossRef Xu Z, He X, Han Y, Huang F (2020) A different viewpoint on mechanism of fracture to shear-banding failure mode transition. J Mech Phys Solids 145:104165CrossRef
23.
Zurück zum Zitat Epperly EN, Sills RB (2020) Transient solute drag and strain aging of dislocations. Acta Mater 193:182–190CrossRef Epperly EN, Sills RB (2020) Transient solute drag and strain aging of dislocations. Acta Mater 193:182–190CrossRef
24.
Zurück zum Zitat Austin RA, McDowell DL (2011) A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates. Int J Plast 27(1):1–24CrossRef Austin RA, McDowell DL (2011) A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates. Int J Plast 27(1):1–24CrossRef
25.
Zurück zum Zitat Guo Y, Ruan Q, Zhu S, Wei Q, Lu J, Hu B, Wu X, Li Y (2020) Dynamic failure of titanium: Temperature rise and adiabatic shear band formation. J Mech Phys Solids 135:103811CrossRef Guo Y, Ruan Q, Zhu S, Wei Q, Lu J, Hu B, Wu X, Li Y (2020) Dynamic failure of titanium: Temperature rise and adiabatic shear band formation. J Mech Phys Solids 135:103811CrossRef
26.
Zurück zum Zitat Li Z, Zhao S, Alotaibi SM, Liu Y, Wang B, Meyers MA (2018) Adiabatic shear localization in the CrMnFeCoNi high-entropy alloy. Acta Mater 151:424–431CrossRef Li Z, Zhao S, Alotaibi SM, Liu Y, Wang B, Meyers MA (2018) Adiabatic shear localization in the CrMnFeCoNi high-entropy alloy. Acta Mater 151:424–431CrossRef
27.
Zurück zum Zitat Roux E, Longère P, Cherrier O, Millot T, Capdeville D, Petit J (2015) Analysis of ASB assisted failure in a high strength steel under high loading rate. Mater Des 75:149–159CrossRef Roux E, Longère P, Cherrier O, Millot T, Capdeville D, Petit J (2015) Analysis of ASB assisted failure in a high strength steel under high loading rate. Mater Des 75:149–159CrossRef
28.
Zurück zum Zitat Lee T, Nassiri A, Dittrich T, Vivek A, Daehn G (2020) Microstructure development in impact welding of a model system. Scripta Mater 178:203–206CrossRef Lee T, Nassiri A, Dittrich T, Vivek A, Daehn G (2020) Microstructure development in impact welding of a model system. Scripta Mater 178:203–206CrossRef
29.
Zurück zum Zitat Gray GT, Livescu V, Rigg PA, Trujillo CP, Cady CM, Chen SR, Carpenter JS, Lienert TJ, Fensin SJ (2017) Structure/property (constitutive and spallation response) of additively manufactured 316L stainless steel. Acta Mater 138:140–149CrossRef Gray GT, Livescu V, Rigg PA, Trujillo CP, Cady CM, Chen SR, Carpenter JS, Lienert TJ, Fensin SJ (2017) Structure/property (constitutive and spallation response) of additively manufactured 316L stainless steel. Acta Mater 138:140–149CrossRef
30.
Zurück zum Zitat Laurençon M, de Rességuier T, Loison D, Baillargeat J, Ngnekou JND, Nadot Y (2019) Effects of additive manufacturing on the dynamic response of AlSi10Mg to laser shock loading. Mater Sci Eng A 748:407–417CrossRef Laurençon M, de Rességuier T, Loison D, Baillargeat J, Ngnekou JND, Nadot Y (2019) Effects of additive manufacturing on the dynamic response of AlSi10Mg to laser shock loading. Mater Sci Eng A 748:407–417CrossRef
31.
Zurück zum Zitat Alaghmandfard R, Dharmendra C, Odeshi AG, Mohammadi M (2020) Dynamic mechanical properties and failure characteristics of electron beam melted Ti-6Al-4V under high strain rate impact loadings. Mater Sci Eng A 793:139794CrossRef Alaghmandfard R, Dharmendra C, Odeshi AG, Mohammadi M (2020) Dynamic mechanical properties and failure characteristics of electron beam melted Ti-6Al-4V under high strain rate impact loadings. Mater Sci Eng A 793:139794CrossRef
32.
Zurück zum Zitat Ran C, Chen P, Li L, Zhang W (2017) Dynamic shear deformation and failure of Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy. Mater Sci Eng A 694:41–47CrossRef Ran C, Chen P, Li L, Zhang W (2017) Dynamic shear deformation and failure of Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy. Mater Sci Eng A 694:41–47CrossRef
33.
Zurück zum Zitat Fadida R, Rittel D, Shirizly A (2015) Dynamic mechanical behavior of additively manufactured Ti6Al4V with controlled voids. J Appl Mech 82(4):041004CrossRef Fadida R, Rittel D, Shirizly A (2015) Dynamic mechanical behavior of additively manufactured Ti6Al4V with controlled voids. J Appl Mech 82(4):041004CrossRef
34.
Zurück zum Zitat Pratheesh Kumar S, Elangovan S, Mohanraj R, Sathya Narayanan V (2021) Significance of continuous wave and pulsed wave laser in direct metal deposition. Mater Today: Proc 46:8086–8096 Pratheesh Kumar S, Elangovan S, Mohanraj R, Sathya Narayanan V (2021) Significance of continuous wave and pulsed wave laser in direct metal deposition. Mater Today: Proc 46:8086–8096
35.
Zurück zum Zitat Clos R, Schreppel U, Veit P (2003) Temperature, microstructure and mechanical response during shear-band formation in different metallic materials. In: Journal de Physique IV France, vol. 110, pp. 111–116 Clos R, Schreppel U, Veit P (2003) Temperature, microstructure and mechanical response during shear-band formation in different metallic materials. In: Journal de Physique IV France, vol. 110, pp. 111–116
36.
Zurück zum Zitat Peirs J, Verleysen P, Degrieck J, Coghe F (2010) The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti-6Al-4V. Int J Impact Eng 37(6):703–714CrossRef Peirs J, Verleysen P, Degrieck J, Coghe F (2010) The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti-6Al-4V. Int J Impact Eng 37(6):703–714CrossRef
37.
Zurück zum Zitat Karthik GM, Kim HS (2021) Heterogeneous aspects of additive manufactured metallic parts: A review. Met Mater Int 27:1–39CrossRef Karthik GM, Kim HS (2021) Heterogeneous aspects of additive manufactured metallic parts: A review. Met Mater Int 27:1–39CrossRef
38.
Zurück zum Zitat Sofinowski KA, Raman S, Wang X, Gaskey B, Seita M (2021) Layer-wise engineering of grain orientation (lego) in laser powder bed fusion of stainless steel 316L. Addit Manuf 38:101809 Sofinowski KA, Raman S, Wang X, Gaskey B, Seita M (2021) Layer-wise engineering of grain orientation (lego) in laser powder bed fusion of stainless steel 316L. Addit Manuf 38:101809
39.
Zurück zum Zitat Guglielmi PO, Ziehmer M, Lilleodden ET (2018) On a novel strain indicator based on uncorrelated misorientation angles for correlating dislocation density to local strength. Acta Mater 150:195–205CrossRef Guglielmi PO, Ziehmer M, Lilleodden ET (2018) On a novel strain indicator based on uncorrelated misorientation angles for correlating dislocation density to local strength. Acta Mater 150:195–205CrossRef
40.
Zurück zum Zitat Rezvanian O, Zikry M, Rajendran A (2007) Statistically stored, geometrically necessary and grain boundary dislocation densities: microstructural representation and modelling. Proc Royal Soc A: Math, Phys Eng Sci 463:2833–2853CrossRef Rezvanian O, Zikry M, Rajendran A (2007) Statistically stored, geometrically necessary and grain boundary dislocation densities: microstructural representation and modelling. Proc Royal Soc A: Math, Phys Eng Sci 463:2833–2853CrossRef
41.
Zurück zum Zitat Schayes C, Bouquerel J, Vogt J-B, Palleschi F, Zaefferer S (2016) A comparison of EBSD based strain indicators for the study of Fe-3Si steel subjected to cyclic loading. Mater Charact 115:61–70CrossRef Schayes C, Bouquerel J, Vogt J-B, Palleschi F, Zaefferer S (2016) A comparison of EBSD based strain indicators for the study of Fe-3Si steel subjected to cyclic loading. Mater Charact 115:61–70CrossRef
42.
Zurück zum Zitat Jariwala S, Sun H, Adhyaksa GWP, Lof A, Muscarella LA, Ehrler B, Garnett EC, Ginger DS (2019) Local Crystal Misorientation Influences Non-radiative Recombination in Halide Perovskites. Joule 3(12):3048–3060CrossRef Jariwala S, Sun H, Adhyaksa GWP, Lof A, Muscarella LA, Ehrler B, Garnett EC, Ginger DS (2019) Local Crystal Misorientation Influences Non-radiative Recombination in Halide Perovskites. Joule 3(12):3048–3060CrossRef
43.
Zurück zum Zitat Carroll BE, Palmer TA, Beese AM (2015) Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing. Acta Mater 87:309–320CrossRef Carroll BE, Palmer TA, Beese AM (2015) Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing. Acta Mater 87:309–320CrossRef
44.
Zurück zum Zitat Chen L, Liu W, Song L (2021) A multiscale investigation of deformation heterogeneity in additively manufactured 316L stainless steel. Mater Sci Eng A 820:141493CrossRef Chen L, Liu W, Song L (2021) A multiscale investigation of deformation heterogeneity in additively manufactured 316L stainless steel. Mater Sci Eng A 820:141493CrossRef
45.
Zurück zum Zitat Ma K, Wen H, Hu T, Topping TD, Isheim D, Seidman DN, Lavernia EJ, Schoenung JM (2014) Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater 62:141–155CrossRef Ma K, Wen H, Hu T, Topping TD, Isheim D, Seidman DN, Lavernia EJ, Schoenung JM (2014) Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater 62:141–155CrossRef
46.
Zurück zum Zitat Busby JT, Hash MC, Was GS (2005) The relationship between hardness and yield stress in irradiated austenitic and ferritic steels. J Nucl Mater 336(2):267–278CrossRef Busby JT, Hash MC, Was GS (2005) The relationship between hardness and yield stress in irradiated austenitic and ferritic steels. J Nucl Mater 336(2):267–278CrossRef
47.
Zurück zum Zitat Smith TR, Sugar JD, Schoenung JM, San Marchi C (2018) Anomalous annealing response of directed energy deposited type 304L austenitic stainless steel. JOM 70(3):358–363CrossRef Smith TR, Sugar JD, Schoenung JM, San Marchi C (2018) Anomalous annealing response of directed energy deposited type 304L austenitic stainless steel. JOM 70(3):358–363CrossRef
48.
Zurück zum Zitat Mishra A, Martin M, Thadhani NN, Kad BK, Kenik EA, Meyers MA (2008) High-strain-rate response of ultra-fine-grained copper. Acta Mater 56(12):2770–2783CrossRef Mishra A, Martin M, Thadhani NN, Kad BK, Kenik EA, Meyers MA (2008) High-strain-rate response of ultra-fine-grained copper. Acta Mater 56(12):2770–2783CrossRef
49.
Zurück zum Zitat Waseda O, Veiga RG, Morthomas J, Chantrenne P, Becquart CS, Ribeiro F, Jelea A, Goldenstein H, Perez M (2017) Formation of carbon cottrell atmospheres and their effect on the stress field around an edge dislocation. Scripta Mater 129:16–19CrossRef Waseda O, Veiga RG, Morthomas J, Chantrenne P, Becquart CS, Ribeiro F, Jelea A, Goldenstein H, Perez M (2017) Formation of carbon cottrell atmospheres and their effect on the stress field around an edge dislocation. Scripta Mater 129:16–19CrossRef
50.
Zurück zum Zitat Chu D, Li X, Liu Z, Cheng J, Wang T, Li Z, Zhuang Z (2019) A unified phase field damage model for modeling the brittle-ductile dynamic failure mode transition in metals. Eng Fract Mech 212:197–209CrossRef Chu D, Li X, Liu Z, Cheng J, Wang T, Li Z, Zhuang Z (2019) A unified phase field damage model for modeling the brittle-ductile dynamic failure mode transition in metals. Eng Fract Mech 212:197–209CrossRef
51.
Zurück zum Zitat Lieou CKC, Bronkhorst CA (2018) Dynamic recrystallization in adiabatic shear banding: Effective-temperature model and comparison to experiments in ultrafine-grained titanium. Int J Plast 111:107–121CrossRef Lieou CKC, Bronkhorst CA (2018) Dynamic recrystallization in adiabatic shear banding: Effective-temperature model and comparison to experiments in ultrafine-grained titanium. Int J Plast 111:107–121CrossRef
52.
Zurück zum Zitat Wright SI, Nowell MM, Field DP (2011) A review of strain analysis using electron backscatter diffraction. Microsc Microanal 17(3):316–329CrossRef Wright SI, Nowell MM, Field DP (2011) A review of strain analysis using electron backscatter diffraction. Microsc Microanal 17(3):316–329CrossRef
53.
Zurück zum Zitat Gao B, Lai Q, Cao Y, Hu R, Xiao L, Pan Z, Liang N, Li Y, Gang S, Liu M, Zhou H, Wu X, Zhu Y (2020) Ultrastrong low-carbon nanosteel produced by heterostructure and interstitial mediated warm rolling. Sci Adv 6:8169–8192CrossRef Gao B, Lai Q, Cao Y, Hu R, Xiao L, Pan Z, Liang N, Li Y, Gang S, Liu M, Zhou H, Wu X, Zhu Y (2020) Ultrastrong low-carbon nanosteel produced by heterostructure and interstitial mediated warm rolling. Sci Adv 6:8169–8192CrossRef
54.
Zurück zum Zitat Luo ZC, Huang MX (2018) Revisit the role of deformation twins on the work-hardening behaviour of twinning-induced plasticity steels. Scripta Mater 142:28–31CrossRef Luo ZC, Huang MX (2018) Revisit the role of deformation twins on the work-hardening behaviour of twinning-induced plasticity steels. Scripta Mater 142:28–31CrossRef
55.
Zurück zum Zitat Wu X, Yang M, Yuan F, Wu G, Wei Y, Huang X, Zhu Y (2015) Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Natl Acad Sci 112(47):14501–14505CrossRef Wu X, Yang M, Yuan F, Wu G, Wei Y, Huang X, Zhu Y (2015) Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Natl Acad Sci 112(47):14501–14505CrossRef
56.
Zurück zum Zitat Zepeda-Ruiz LA, Stukowski A, Oppelstrup T, Bertin N, Barton NR, Freitas R, Bulatov VV (2021) Atomistic insights into metal hardening. Nat Mater 20:315–325CrossRef Zepeda-Ruiz LA, Stukowski A, Oppelstrup T, Bertin N, Barton NR, Freitas R, Bulatov VV (2021) Atomistic insights into metal hardening. Nat Mater 20:315–325CrossRef
57.
Zurück zum Zitat Lins JFC, Sandim HRZ, Kestenbach H-J, Raabe D, Vecchio KS (2007) A microstructural investigation of adiabatic shear bands in an interstitial free steel. Mater Sci Eng A 457(1):205–218CrossRef Lins JFC, Sandim HRZ, Kestenbach H-J, Raabe D, Vecchio KS (2007) A microstructural investigation of adiabatic shear bands in an interstitial free steel. Mater Sci Eng A 457(1):205–218CrossRef
Metadaten
Titel
Dynamic mechanical behavior and microstructural evolution of additively manufactured 316L stainless steel
verfasst von
Hongyu Yu
Rong Chen
Wenyang Liu
Simeng Li
Ling Chen
Shujuan Hou
Publikationsdatum
03.01.2022
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 18/2022
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-06765-6

Weitere Artikel der Ausgabe 18/2022

Journal of Materials Science 18/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.