Skip to main content
Erschienen in: Neural Computing and Applications 22/2021

07.06.2021 | Original Article

Dynamic mobile charger scheduling with partial charging strategy for WSNs using deep-Q-networks

verfasst von: Sanjai Prasada Rao Banoth, Praveen Kumar Donta, Tarachand Amgoth

Erschienen in: Neural Computing and Applications | Ausgabe 22/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless sensor networks are a group of spatially distributed nodes deployed to sense, gather, and transmit data to the sink for further analytics. Due to continuous operations, the battery-equipped sensor nodes (SNs) drain energy rapidly, and replacing them is a hectic task. Wireless energy transfer (WET) is evolved as a promising innovation to recharge the SNs battery wirelessly to address the challenges. A WET is embedded in a vehicle called a mobile charger (MC) and traveled in the network to recharge the SNs. However, scheduling the mobile charger over the network before a sensor node dies is challenging. In this work, we introduced a partial charging strategy to avoid the long waiting time for MC because full recharging of a single node takes a long time. The partial charging strategy preempts the current charging node and moves to the newly requested node to minimize the network’s dead nodes. However, it will increase the traveling distance. Hence, adequate charging time and MC traveling path are required. In this context, this paper proposes a deep reinforcement learning-based mobile charger scheduling strategy called dynamic partial mobile charger scheduling using deep-Q-networks (DPMCS). The proposed DPMCS learns from the environment and decides each sensor’s charging duration in an identified tour. Experimental results reveal that the proposed DPMCS outperforms well compared to the existing studies, enhance the lifetime and diminish the dead nodes count.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wireless sensor networks: a survey. Comput Netw 38(4):393–422CrossRef Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wireless sensor networks: a survey. Comput Netw 38(4):393–422CrossRef
2.
Zurück zum Zitat Arivudainambi D, Balaji S (2018) Optimal placement of wireless chargers in rechargeable sensor networks. IEEE Sens J 18(10):4212–4222CrossRef Arivudainambi D, Balaji S (2018) Optimal placement of wireless chargers in rechargeable sensor networks. IEEE Sens J 18(10):4212–4222CrossRef
3.
Zurück zum Zitat Aslam N, Xia K, Hadi MU (2019) Optimal wireless charging inclusive of intellectual routing based on SARSA learning in renewable wireless sensor networks. IEEE Sens J 19(18):8340–8351CrossRef Aslam N, Xia K, Hadi MU (2019) Optimal wireless charging inclusive of intellectual routing based on SARSA learning in renewable wireless sensor networks. IEEE Sens J 19(18):8340–8351CrossRef
4.
Zurück zum Zitat Baroudi U (2017) Robot-assisted maintenance of wireless sensor networks using wireless energy transfer. IEEE Sens J 17(14):4661–4671CrossRef Baroudi U (2017) Robot-assisted maintenance of wireless sensor networks using wireless energy transfer. IEEE Sens J 17(14):4661–4671CrossRef
5.
Zurück zum Zitat Dai H, Liu Y, Chen G, Wu X, He T, Liu AX, Ma H (2017) Safe charging for wireless power transfer. IEEE/ACM Trans Netw 25(6):3531–3544CrossRef Dai H, Liu Y, Chen G, Wu X, He T, Liu AX, Ma H (2017) Safe charging for wireless power transfer. IEEE/ACM Trans Netw 25(6):3531–3544CrossRef
6.
Zurück zum Zitat Donta PK, Rao BSP, Amgoth T, Annavarapu CSR, Swain S (2020) Data collection and path determination strategies for mobile sink in 3D WSNs. IEEE Sens J 20(4):2224–2233CrossRef Donta PK, Rao BSP, Amgoth T, Annavarapu CSR, Swain S (2020) Data collection and path determination strategies for mobile sink in 3D WSNs. IEEE Sens J 20(4):2224–2233CrossRef
7.
Zurück zum Zitat Ejaz W, Naeem M, Basharat M, Anpalagan A, Kandeepan S (2016) Efficient wireless power transfer in software-defined wireless sensor networks. IEEE Sens J 16(20):7409–7420CrossRef Ejaz W, Naeem M, Basharat M, Anpalagan A, Kandeepan S (2016) Efficient wireless power transfer in software-defined wireless sensor networks. IEEE Sens J 16(20):7409–7420CrossRef
8.
Zurück zum Zitat Feng Y, Liu N, Wang F, Qian Q, Fu X (2017) A framework of mobile energy replenishment for wireless sensor and actuator networks. In: GLOBECOM 2017-2017 IEEE global communications conference, IEEE, pp 1–6 Feng Y, Liu N, Wang F, Qian Q, Fu X (2017) A framework of mobile energy replenishment for wireless sensor and actuator networks. In: GLOBECOM 2017-2017 IEEE global communications conference, IEEE, pp 1–6
9.
Zurück zum Zitat Han G, Guan H, Wu J, Chan S, Shu L, Zhang W (2018) An uneven cluster-based mobile charging algorithm for wireless rechargeable sensor networks. IEEE Syst J 13(4):3747–3758CrossRef Han G, Guan H, Wu J, Chan S, Shu L, Zhang W (2018) An uneven cluster-based mobile charging algorithm for wireless rechargeable sensor networks. IEEE Syst J 13(4):3747–3758CrossRef
10.
Zurück zum Zitat Li J, Mohapatra P (2007) Analytical modeling and mitigation techniques for the energy hole problem in sensor networks. Pervasive Mob Comput 3(3):233–254CrossRef Li J, Mohapatra P (2007) Analytical modeling and mitigation techniques for the energy hole problem in sensor networks. Pervasive Mob Comput 3(3):233–254CrossRef
11.
Zurück zum Zitat Liang W, Xu Z, Xu W, Shi J, Mao G, Das SK (2017) Approximation algorithms for charging reward maximization in rechargeable sensor networks via a mobile charger. IEEE/ACM Trans Netw 25(5):3161–3174CrossRef Liang W, Xu Z, Xu W, Shi J, Mao G, Das SK (2017) Approximation algorithms for charging reward maximization in rechargeable sensor networks via a mobile charger. IEEE/ACM Trans Netw 25(5):3161–3174CrossRef
12.
Zurück zum Zitat Lin C, Zhou J, Guo C, Song H, Wu G, Obaidat MS (2017a) Tsca: a temporal-spatial real-time charging scheduling algorithm for on-demand architecture in wireless rechargeable sensor networks. IEEE Trans Mob Comput 17(1):211–224CrossRef Lin C, Zhou J, Guo C, Song H, Wu G, Obaidat MS (2017a) Tsca: a temporal-spatial real-time charging scheduling algorithm for on-demand architecture in wireless rechargeable sensor networks. IEEE Trans Mob Comput 17(1):211–224CrossRef
13.
Zurück zum Zitat Lin C, Zhou Y, Song H, Yu CW, Wu G (2017b) Oppc: an optimal path planning charging scheme based on schedulability evaluation for wrsns. ACM Trans Embedded Comput Syst (TECS) 17(1):1–25 Lin C, Zhou Y, Song H, Yu CW, Wu G (2017b) Oppc: an optimal path planning charging scheme based on schedulability evaluation for wrsns. ACM Trans Embedded Comput Syst (TECS) 17(1):1–25
14.
Zurück zum Zitat Lin C, Wei S, Deng J, Obaidat MS, Song H, Wang L, Wu G (2018) Gtccs: a game theoretical collaborative charging scheduling for on-demand charging architecture. IEEE Trans Veh Technol 67(12):12124–12136CrossRef Lin C, Wei S, Deng J, Obaidat MS, Song H, Wang L, Wu G (2018) Gtccs: a game theoretical collaborative charging scheduling for on-demand charging architecture. IEEE Trans Veh Technol 67(12):12124–12136CrossRef
16.
Zurück zum Zitat Lu X, Wang P, Niyato D, Kim DI, Han Z (2016) Wireless charging technologies: fundamentals, standards, and network applications. IEEE Commun Surv Tutor 18(2):1413–1452CrossRef Lu X, Wang P, Niyato D, Kim DI, Han Z (2016) Wireless charging technologies: fundamentals, standards, and network applications. IEEE Commun Surv Tutor 18(2):1413–1452CrossRef
17.
Zurück zum Zitat Luong NC, Hoang DT, Gong S, Niyato D, Wang P, Liang YC, Kim DI (2019) Applications of deep reinforcement learning in communications and networking: a survey. IEEE Commun Surv Tutor 21(4):3133–3174CrossRef Luong NC, Hoang DT, Gong S, Niyato D, Wang P, Liang YC, Kim DI (2019) Applications of deep reinforcement learning in communications and networking: a survey. IEEE Commun Surv Tutor 21(4):3133–3174CrossRef
18.
Zurück zum Zitat Ma Y, Liang W, Xu W (2018) Charging utility maximization in wireless rechargeable sensor networks by charging multiple sensors simultaneously. IEEE/ACM Trans Netw 26(4):1591–1604CrossRef Ma Y, Liang W, Xu W (2018) Charging utility maximization in wireless rechargeable sensor networks by charging multiple sensors simultaneously. IEEE/ACM Trans Netw 26(4):1591–1604CrossRef
19.
Zurück zum Zitat Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G et al (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529–533CrossRef Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G et al (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529–533CrossRef
20.
Zurück zum Zitat Na W, Park J, Lee C, Park K, Kim J, Cho S (2017) Energy-efficient mobile charging for wireless power transfer in internet of things networks. IEEE Internet of Things J 5(1):79–92 Na W, Park J, Lee C, Park K, Kim J, Cho S (2017) Energy-efficient mobile charging for wireless power transfer in internet of things networks. IEEE Internet of Things J 5(1):79–92
21.
Zurück zum Zitat Prasannababu D, Vaishnav S, Amgoth T (2019) Mobile charger scheduling using partial charging strategy for rechargeable wsns. In: 2019 international conference on computing, power and communication technologies (GUCON), IEEE, pp 845–852 Prasannababu D, Vaishnav S, Amgoth T (2019) Mobile charger scheduling using partial charging strategy for rechargeable wsns. In: 2019 international conference on computing, power and communication technologies (GUCON), IEEE, pp 845–852
22.
Zurück zum Zitat Praveen Kumar D, Tarachand A, Rao ACS (2019) Machine learning algorithms for wireless sensor networks: a survey. Inf Fusion 49:1–25CrossRef Praveen Kumar D, Tarachand A, Rao ACS (2019) Machine learning algorithms for wireless sensor networks: a survey. Inf Fusion 49:1–25CrossRef
23.
Zurück zum Zitat Rao BSP, Singh D, Amgoth T (2019) Joint wireless charging and data collection using mobile element for rechargeable wsns. In: 2019 international conference on computing. power and communication technologies (GUCON), IEEE, pp 837–844 Rao BSP, Singh D, Amgoth T (2019) Joint wireless charging and data collection using mobile element for rechargeable wsns. In: 2019 international conference on computing. power and communication technologies (GUCON), IEEE, pp 837–844
24.
Zurück zum Zitat Sangare F, Xiao Y, Niyato D, Han Z (2017) Mobile charging in wireless-powered sensor networks: optimal scheduling and experimental implementation. IEEE Trans Veh Technol 66(8):7400–7410CrossRef Sangare F, Xiao Y, Niyato D, Han Z (2017) Mobile charging in wireless-powered sensor networks: optimal scheduling and experimental implementation. IEEE Trans Veh Technol 66(8):7400–7410CrossRef
25.
Zurück zum Zitat Shi Y, Xie L, Hou YT, Sherali HD (2011) On renewable sensor networks with wireless energy transfer. In: 2011 Proceedings IEEE INFOCOM, IEEE, pp 1350–1358 Shi Y, Xie L, Hou YT, Sherali HD (2011) On renewable sensor networks with wireless energy transfer. In: 2011 Proceedings IEEE INFOCOM, IEEE, pp 1350–1358
26.
Zurück zum Zitat Shu Y, Shin KG, Chen J, Sun Y (2016) Joint energy replenishment and operation scheduling in wireless rechargeable sensor networks. IEEE Trans Ind Inform 13(1):125–134CrossRef Shu Y, Shin KG, Chen J, Sun Y (2016) Joint energy replenishment and operation scheduling in wireless rechargeable sensor networks. IEEE Trans Ind Inform 13(1):125–134CrossRef
27.
Zurück zum Zitat Wang C, Li J, Ye F, Yang Y (2014) Netwrap: an ndn based real-timewireless recharging framework for wireless sensor networks. IEEE Trans Mob Comput 13(6):1283–1297CrossRef Wang C, Li J, Ye F, Yang Y (2014) Netwrap: an ndn based real-timewireless recharging framework for wireless sensor networks. IEEE Trans Mob Comput 13(6):1283–1297CrossRef
28.
Zurück zum Zitat Wang Q, Kong F, Wang M, Wang H (2017) Optimized charging scheduling with single mobile charger for wireless rechargeable sensor networks. Symmetry 9(11):285CrossRef Wang Q, Kong F, Wang M, Wang H (2017) Optimized charging scheduling with single mobile charger for wireless rechargeable sensor networks. Symmetry 9(11):285CrossRef
29.
Zurück zum Zitat Xie L, Shi Y, Hou YT, Lou W, Sherali HD, Zhou H, Midkiff SF (2015) A mobile platform for wireless charging and data collection in sensor networks. IEEE J Sel Areas Commun 33(8):1521–1533 Xie L, Shi Y, Hou YT, Lou W, Sherali HD, Zhou H, Midkiff SF (2015) A mobile platform for wireless charging and data collection in sensor networks. IEEE J Sel Areas Commun 33(8):1521–1533
30.
Zurück zum Zitat Xu W, Liang W, Jia X, Xu Z, Li Z, Liu Y (2018) Maximizing sensor lifetime with the minimal service cost of a mobile charger in wireless sensor networks. IEEE Trans Mob Comput 17(11):2564–2577CrossRef Xu W, Liang W, Jia X, Xu Z, Li Z, Liu Y (2018) Maximizing sensor lifetime with the minimal service cost of a mobile charger in wireless sensor networks. IEEE Trans Mob Comput 17(11):2564–2577CrossRef
31.
Zurück zum Zitat Zhu J, Feng Y, Liu M, Zhang Z, Ma C (2017) Node failure avoidance mobile charging in wireless rechargeable sensor networks. In: GLOBECOM 2017-2017 IEEE global communications conference, IEEE, pp 1–6 Zhu J, Feng Y, Liu M, Zhang Z, Ma C (2017) Node failure avoidance mobile charging in wireless rechargeable sensor networks. In: GLOBECOM 2017-2017 IEEE global communications conference, IEEE, pp 1–6
32.
Zurück zum Zitat Zhu X, Li J, Zhou M (2019) Target coverage-oriented deployment of rechargeable directional sensor networks with a mobile charger. IEEE Internet of Things J 6(3):5196–5208CrossRef Zhu X, Li J, Zhou M (2019) Target coverage-oriented deployment of rechargeable directional sensor networks with a mobile charger. IEEE Internet of Things J 6(3):5196–5208CrossRef
Metadaten
Titel
Dynamic mobile charger scheduling with partial charging strategy for WSNs using deep-Q-networks
verfasst von
Sanjai Prasada Rao Banoth
Praveen Kumar Donta
Tarachand Amgoth
Publikationsdatum
07.06.2021
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 22/2021
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-021-06146-9

Weitere Artikel der Ausgabe 22/2021

Neural Computing and Applications 22/2021 Zur Ausgabe

Premium Partner