Skip to main content
Erschienen in: Journal of Applied Mathematics and Computing 5/2022

24.11.2021 | Original Research

Dynamically consistent nonstandard finite difference schemes for a virus-patch dynamic model

verfasst von: Manh Tuan Hoang

Erschienen in: Journal of Applied Mathematics and Computing | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of this work is to formulate and analyze nonstandard finite difference (NSFD) schemes for a recognized virus-patch dynamic model. We introduce a simple and efficient approach to study the global asymptotic stability (GAS) of the constructed NSFD schemes. This approach is based on the Lyapunov stability theorem for discrete-time dynamical systems in combination with a well-known result on the GAS of discrete-time nonlinear cascade systems. As an important consequence, we obtain dynamically consistent NSFD schemes that provide reliable numerical approximations for the virus-patch dynamic model regardless of chosen step sizes. In addition, the convergence and error bounds for the constructed NSFD schemes are also investigated. Finally, a set of numerical examples is performed to support and illustrate the theoretical results. The numerical results show that some typical standard Runge–Kutta schemes fail to preserve the positivity and GAS of the continuous model for some given step sizes, meanwhile, the NSFD schemes preserve these properties for the same step sizes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adekanye, O., Washington, T.: Nonstandard finite difference scheme for a Tacoma Narrows Bridge model. Appl. Math. Model. 62, 223–236 (2018)MathSciNetMATHCrossRef Adekanye, O., Washington, T.: Nonstandard finite difference scheme for a Tacoma Narrows Bridge model. Appl. Math. Model. 62, 223–236 (2018)MathSciNetMATHCrossRef
2.
Zurück zum Zitat Anguelov, R., Lubuma, J.M.-S.: Nonstandard finite difference method by nonlocal approximation. Math. Comput. Simul. 61, 465–475 (2003)MathSciNetMATHCrossRef Anguelov, R., Lubuma, J.M.-S.: Nonstandard finite difference method by nonlocal approximation. Math. Comput. Simul. 61, 465–475 (2003)MathSciNetMATHCrossRef
3.
Zurück zum Zitat Arenas, A.J., Gonzalez-Parra, G., Chen-Charpentier, B.M.: Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order. Math. Comput. Simul. 121, 48–63 (2016)MathSciNetMATHCrossRef Arenas, A.J., Gonzalez-Parra, G., Chen-Charpentier, B.M.: Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order. Math. Comput. Simul. 121, 48–63 (2016)MathSciNetMATHCrossRef
4.
Zurück zum Zitat Ascher, U. M., Petzold, L. R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, Society for Industrial and Applied Mathematics (1998) Ascher, U. M., Petzold, L. R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, Society for Industrial and Applied Mathematics (1998)
5.
Zurück zum Zitat Burden, R.L., Faires, J.D.: Numerical Analysis, 9th edn. Cengage Learning, Brooks/Cole (2011)MATH Burden, R.L., Faires, J.D.: Numerical Analysis, 9th edn. Cengage Learning, Brooks/Cole (2011)MATH
6.
Zurück zum Zitat Calatayud, J., Jornet, M.: An improvement of two nonstandard finite difference schemes for two population mathematical models. J. Differ. Equ. Appl. 27, 422–430 (2021)MathSciNetMATHCrossRef Calatayud, J., Jornet, M.: An improvement of two nonstandard finite difference schemes for two population mathematical models. J. Differ. Equ. Appl. 27, 422–430 (2021)MathSciNetMATHCrossRef
7.
Zurück zum Zitat Cresson, J., Pierret, F.: Non standard finite difference scheme preserving dynamical properties. J. Comput. Appl. Math. 303, 15–30 (2016)MathSciNetMATHCrossRef Cresson, J., Pierret, F.: Non standard finite difference scheme preserving dynamical properties. J. Comput. Appl. Math. 303, 15–30 (2016)MathSciNetMATHCrossRef
8.
Zurück zum Zitat Dang, Q.A., Hoang, M.T.: Positivity and global stability preserving NSFD schemes for a mixing propagation model of computer viruses. J. Comput. Appl. Math. 374, 112753 (2020)MathSciNetMATHCrossRef Dang, Q.A., Hoang, M.T.: Positivity and global stability preserving NSFD schemes for a mixing propagation model of computer viruses. J. Comput. Appl. Math. 374, 112753 (2020)MathSciNetMATHCrossRef
9.
Zurück zum Zitat Dang, Q.A., Hoang, M.T.: Nonstandard finite difference schemes for a general predator-prey system. J. Comput. Sci. 36, 101015 (2019)MathSciNetCrossRef Dang, Q.A., Hoang, M.T.: Nonstandard finite difference schemes for a general predator-prey system. J. Comput. Sci. 36, 101015 (2019)MathSciNetCrossRef
10.
11.
Zurück zum Zitat Dang, Q.A., Hoang, M.T.: Lyapunov direct method for investigating stability of nonstandard finite difference schemes for metapopulation models. J. Differ. Equations Appl. 24, 15–47 (2019)MathSciNetMATHCrossRef Dang, Q.A., Hoang, M.T.: Lyapunov direct method for investigating stability of nonstandard finite difference schemes for metapopulation models. J. Differ. Equations Appl. 24, 15–47 (2019)MathSciNetMATHCrossRef
12.
Zurück zum Zitat Dang, Q.A., Hoang, M.T.: Complete global stability of a metapopulation model and its dynamically consistent discrete models. Qual. Theory of Dyn. Syst. 18, 461–475 (2019)MathSciNetMATHCrossRef Dang, Q.A., Hoang, M.T.: Complete global stability of a metapopulation model and its dynamically consistent discrete models. Qual. Theory of Dyn. Syst. 18, 461–475 (2019)MathSciNetMATHCrossRef
13.
Zurück zum Zitat Dang, Q.A., Hoang, M.T.: Positive and elementary stable explicit nonstandard Runge–Kutta methods for a class of autonomous dynamical systems. Int. J. Comput. Math. 97, 2036–2054 (2020)MathSciNetMATHCrossRef Dang, Q.A., Hoang, M.T.: Positive and elementary stable explicit nonstandard Runge–Kutta methods for a class of autonomous dynamical systems. Int. J. Comput. Math. 97, 2036–2054 (2020)MathSciNetMATHCrossRef
14.
Zurück zum Zitat Dimitrov, D.T., Kojouharov, H.V.: Nonstandard finite-difference schemes for general two-dimensional autonomous dynamical systems. Appl. Math. Lett. 18, 769–774 (2005)MathSciNetMATHCrossRef Dimitrov, D.T., Kojouharov, H.V.: Nonstandard finite-difference schemes for general two-dimensional autonomous dynamical systems. Appl. Math. Lett. 18, 769–774 (2005)MathSciNetMATHCrossRef
15.
Zurück zum Zitat Dimitrov, D.T., Kojouharov, H.V.: Stability-preserving finite difference methods for general multi-dimensional autonomous dynamical systems. Int. J. Numer. Anal. Model. 4, 280–290 (2007)MathSciNetMATH Dimitrov, D.T., Kojouharov, H.V.: Stability-preserving finite difference methods for general multi-dimensional autonomous dynamical systems. Int. J. Numer. Anal. Model. 4, 280–290 (2007)MathSciNetMATH
16.
Zurück zum Zitat Qin, W.D., Ma, Q., Man, Z.Y., Ding, X.H.: A boundedness and monotonicity preserving method for a generalized population model. J. Differ. Equ. Appl. 26, 1347–1368 (2020)MathSciNetMATHCrossRef Qin, W.D., Ma, Q., Man, Z.Y., Ding, X.H.: A boundedness and monotonicity preserving method for a generalized population model. J. Differ. Equ. Appl. 26, 1347–1368 (2020)MathSciNetMATHCrossRef
17.
Zurück zum Zitat Ehrhardt, M., Mickens, R.E.: A nonstandard finite difference scheme for convection-diffusion equations having constant coefficients. Appl. Math. Comput. 219, 6591–6604 (2013)MathSciNetMATH Ehrhardt, M., Mickens, R.E.: A nonstandard finite difference scheme for convection-diffusion equations having constant coefficients. Appl. Math. Comput. 219, 6591–6604 (2013)MathSciNetMATH
18.
Zurück zum Zitat Elaydi, S.: An Introduction to Difference Equations. Springer, New York (2005)MATH Elaydi, S.: An Introduction to Difference Equations. Springer, New York (2005)MATH
19.
Zurück zum Zitat Garba, S.M., Gumel, A.B., Hassan, A.S., Lubuma, J.M.-S.: Switching from exact scheme to nonstandard finite difference scheme for linear delay differential equation. Appl. Math. Comput. 258, 388–403 (2015)MathSciNetMATH Garba, S.M., Gumel, A.B., Hassan, A.S., Lubuma, J.M.-S.: Switching from exact scheme to nonstandard finite difference scheme for linear delay differential equation. Appl. Math. Comput. 258, 388–403 (2015)MathSciNetMATH
20.
Zurück zum Zitat Gupta, M., Slezak, J.M., Alalhareth, F., Roy, S., Kojouharov, H.V.: Second-order nonstandard explicit Euler method. AIP Conf. Proc. 2302, 110003 (2020)CrossRef Gupta, M., Slezak, J.M., Alalhareth, F., Roy, S., Kojouharov, H.V.: Second-order nonstandard explicit Euler method. AIP Conf. Proc. 2302, 110003 (2020)CrossRef
21.
Zurück zum Zitat Hoang, M.T.: Reliable approximations for a hepatitis B virus model by nonstandard numerical schemes. Math. Comput. Simul. 193, 32–56 (2022)MathSciNetMATHCrossRef Hoang, M.T.: Reliable approximations for a hepatitis B virus model by nonstandard numerical schemes. Math. Comput. Simul. 193, 32–56 (2022)MathSciNetMATHCrossRef
22.
Zurück zum Zitat Hoang, M.T., Nagy, A.M.: Uniform asymptotic stability of a Logistic model with feedback control of fractional order and nonstandard finite difference schemes. Chaos Solitons Fractals 123, 24–34 (2019)MathSciNetMATHCrossRef Hoang, M.T., Nagy, A.M.: Uniform asymptotic stability of a Logistic model with feedback control of fractional order and nonstandard finite difference schemes. Chaos Solitons Fractals 123, 24–34 (2019)MathSciNetMATHCrossRef
23.
Zurück zum Zitat Kojouharov, H.V., Roy, S., Gupta, M., Alalhareth, F., Slezak, J.M.: A second-order modified nonstandard theta method for one-dimensional autonomous differential equations. Appl. Math. Lett. 112, 106775 (2021)MathSciNetMATHCrossRef Kojouharov, H.V., Roy, S., Gupta, M., Alalhareth, F., Slezak, J.M.: A second-order modified nonstandard theta method for one-dimensional autonomous differential equations. Appl. Math. Lett. 112, 106775 (2021)MathSciNetMATHCrossRef
24.
Zurück zum Zitat Mickens, R.E.: Nonstandard Finite Difference Models of Differential Equations. World Scientific, Singapore (1993)CrossRef Mickens, R.E.: Nonstandard Finite Difference Models of Differential Equations. World Scientific, Singapore (1993)CrossRef
25.
Zurück zum Zitat Mickens, R.E.: Applications of Nonstandard Finite Difference Schemes. World Scientific, Singapore (2000)MATHCrossRef Mickens, R.E.: Applications of Nonstandard Finite Difference Schemes. World Scientific, Singapore (2000)MATHCrossRef
26.
Zurück zum Zitat Mickens, R.E.: Advances in the Applications of Nonstandard Finite Difference Schemes. World Scientific, Singapore (2005)MATHCrossRef Mickens, R.E.: Advances in the Applications of Nonstandard Finite Difference Schemes. World Scientific, Singapore (2005)MATHCrossRef
27.
28.
Zurück zum Zitat Mickens, R.E.: Nonstandard Finite Difference Schemes: Methodology and Applications. World Scientific, Singapore (2020)MATHCrossRef Mickens, R.E.: Nonstandard Finite Difference Schemes: Methodology and Applications. World Scientific, Singapore (2020)MATHCrossRef
29.
Zurück zum Zitat Mickens, R.E., Washington, T.M.: A note on a positivity preserving nonstandard finite difference scheme for a modified parabolic reaction–advection–diffusion PDE. J. Differ. Equ. Appl. 26, 1423–1427 (2020)MathSciNetMATHCrossRef Mickens, R.E., Washington, T.M.: A note on a positivity preserving nonstandard finite difference scheme for a modified parabolic reaction–advection–diffusion PDE. J. Differ. Equ. Appl. 26, 1423–1427 (2020)MathSciNetMATHCrossRef
31.
Zurück zum Zitat Patidar, K.C.: Nonstandard finite difference methods: recent trends and further developments. J. Differ. Equ. Appl. 22, 817–849 (2016)MathSciNetMATHCrossRef Patidar, K.C.: Nonstandard finite difference methods: recent trends and further developments. J. Differ. Equ. Appl. 22, 817–849 (2016)MathSciNetMATHCrossRef
32.
33.
Zurück zum Zitat Wood, D.T., Kojouharov, H.V.: A class of nonstandard numerical methods for autonomous dynamical systems. Appl. Math. Lett. 50, 78–82 (2015)MathSciNetMATHCrossRef Wood, D.T., Kojouharov, H.V.: A class of nonstandard numerical methods for autonomous dynamical systems. Appl. Math. Lett. 50, 78–82 (2015)MathSciNetMATHCrossRef
34.
Zurück zum Zitat Wood, D.T., Kojouharov, H.V., Dimitrov, D.T.: Universal approaches to approximate biological systems with nonstandard finite difference methods. Math. Comput. Simul. 133, 337–350 (2017)MathSciNetMATHCrossRef Wood, D.T., Kojouharov, H.V., Dimitrov, D.T.: Universal approaches to approximate biological systems with nonstandard finite difference methods. Math. Comput. Simul. 133, 337–350 (2017)MathSciNetMATHCrossRef
Metadaten
Titel
Dynamically consistent nonstandard finite difference schemes for a virus-patch dynamic model
verfasst von
Manh Tuan Hoang
Publikationsdatum
24.11.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Applied Mathematics and Computing / Ausgabe 5/2022
Print ISSN: 1598-5865
Elektronische ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-021-01673-z

Weitere Artikel der Ausgabe 5/2022

Journal of Applied Mathematics and Computing 5/2022 Zur Ausgabe