Skip to main content
Erschienen in: Metal Science and Heat Treatment 3-4/2022

07.09.2022 | SURFACE ENGINEERING

Dynamics of Surface Properties of Steel Kh12MF During Cavitation-Erosion Treatment

verfasst von: R. I. Ningmetzyanov, S. K. Sundukov, D. S. Fatyukhin, A. V. Sukhov

Erschienen in: Metal Science and Heat Treatment | Ausgabe 3-4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The results of studies on the surface of Kh12MF steel following exposure to ultrasonic treatment in a liquid medium are presented. The microhardness, roughness parameters, structure, and submicron structure of surface layers are determined. The mechanism of erosion is revealed along with its correlation with the parameters of micro- and submicron geometry of the sample surface. The possibility of using liquid ultrasonic treatment to improve the properties of heavy-duty materials and components having complex geometry is established.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B. E. Nolting and E. A. Neppiras, “Cavitation produced by ultrasonics,” Proc. Phys. Soc., 63B, 674 (1950); 64B, 1032 (1951). B. E. Nolting and E. A. Neppiras, “Cavitation produced by ultrasonics,” Proc. Phys. Soc., 63B, 674 (1950); 64B, 1032 (1951).
2.
Zurück zum Zitat M. G. Sirotyuk, “Ultrasonic cavitation,” Acoustics, 7(3), 255 – 272 (1962). M. G. Sirotyuk, “Ultrasonic cavitation,” Acoustics, 7(3), 255 – 272 (1962).
3.
Zurück zum Zitat B. A. Agranat, V. I. Bashkirov, and Yu. I. Kitaigorodsky, “Ultrasonic cleaning,” in: L. D. Rosenberg (ed.), Physical Principles of Ultrasonic Technology [in Russian], Moscow, Nauka (1970), pp. 165 – 252. B. A. Agranat, V. I. Bashkirov, and Yu. I. Kitaigorodsky, “Ultrasonic cleaning,” in: L. D. Rosenberg (ed.), Physical Principles of Ultrasonic Technology [in Russian], Moscow, Nauka (1970), pp. 165 – 252.
4.
Zurück zum Zitat K. G. Ebeling, “Application of high-speed holocinematographic methods in cavitation research,” in: W. Lawterborn (ed.), Cavitation and Inhomogeneities in Underwater Acoustics, Berlin – New-York, Springer-Verlag (1980), pp. 35 – 41.CrossRef K. G. Ebeling, “Application of high-speed holocinematographic methods in cavitation research,” in: W. Lawterborn (ed.), Cavitation and Inhomogeneities in Underwater Acoustics, Berlin – New-York, Springer-Verlag (1980), pp. 35 – 41.CrossRef
5.
Zurück zum Zitat I. N. Bogachev, Cavitation Erosion and Cavitation-Resistant Alloys [in Russian], Moscow, Metallurgiya (1972). I. N. Bogachev, Cavitation Erosion and Cavitation-Resistant Alloys [in Russian], Moscow, Metallurgiya (1972).
6.
Zurück zum Zitat A. P. Panov and V. M. Prikhod’ko, “Cavitation erosion in a field of rod radiator,” in: Appl. Ultras. Metal.: Proc. [in Russian], National University of Science and Technology “MISIS,” Moscow (1977), No. 90, pp. 30 – 35. A. P. Panov and V. M. Prikhod’ko, “Cavitation erosion in a field of rod radiator,” in: Appl. Ultras. Metal.: Proc. [in Russian], National University of Science and Technology “MISIS,” Moscow (1977), No. 90, pp. 30 – 35.
7.
Zurück zum Zitat V. M. Prikhod’ko, Improving the Efficiency of Ultrasonic Cleaning of Parts in Fuel-Injection Equipment of an Automotive Engine during Repair, Author’s Abstract of Candidate’s Thesis [in Russian], Moscow (1975). V. M. Prikhod’ko, Improving the Efficiency of Ultrasonic Cleaning of Parts in Fuel-Injection Equipment of an Automotive Engine during Repair, Author’s Abstract of Candidate’s Thesis [in Russian], Moscow (1975).
8.
Zurück zum Zitat S. Vaidya and C. M. Preece, “Cavitation erosion of age-hardenable aluminum alloys,” Metall. Trans. A, 9, 299 – 307 (1978).CrossRef S. Vaidya and C. M. Preece, “Cavitation erosion of age-hardenable aluminum alloys,” Metall. Trans. A, 9, 299 – 307 (1978).CrossRef
9.
Zurück zum Zitat L. D. Rosenberg (ed.), Physics and Technology of High-Power Ultrasound. Vol. 3, Physical Principles of Ultrasonic Technology [in Russian], Moscow, Nauka (1970). L. D. Rosenberg (ed.), Physics and Technology of High-Power Ultrasound. Vol. 3, Physical Principles of Ultrasonic Technology [in Russian], Moscow, Nauka (1970).
10.
Zurück zum Zitat A. B. Agranat, I. V. Bashkirov and Yu. I. Kitaigorodsky, “Method for improving efficiency of ultrasonic impact on processes occurring in fluids,” Ultrason. Tech., 3, 38 (1964). A. B. Agranat, I. V. Bashkirov and Yu. I. Kitaigorodsky, “Method for improving efficiency of ultrasonic impact on processes occurring in fluids,” Ultrason. Tech., 3, 38 (1964).
11.
Zurück zum Zitat B. Niemczewski, “Observations of water cavitation intensity under practical ultrasonic cleaning conditions,” Ultrason. Sonochem., 14(1), 13 – 18 (2007).CrossRef B. Niemczewski, “Observations of water cavitation intensity under practical ultrasonic cleaning conditions,” Ultrason. Sonochem., 14(1), 13 – 18 (2007).CrossRef
12.
Zurück zum Zitat D. S. Fatyukhin, “Experimental studies of ultrasonic cleaning parameters influencing cavitation erosion,” Vest. Mosk. Avtom.-Dor. Gos. Telh. Univ. (MADI), No. 4(27), 38 – 42 (2011). D. S. Fatyukhin, “Experimental studies of ultrasonic cleaning parameters influencing cavitation erosion,” Vest. Mosk. Avtom.-Dor. Gos. Telh. Univ. (MADI), No. 4(27), 38 – 42 (2011).
13.
Zurück zum Zitat L. P. Wang, J. H. Liao, Z. H. Ueda, et al., “Microbubbles for effective cleaning of metal surfaces without chemical agents,” Preprint of Ultrason. Sonochem. (2022) (Available online: https://ssrn.com/abstract=3914052, cited December 1, 2021). L. P. Wang, J. H. Liao, Z. H. Ueda, et al., “Microbubbles for effective cleaning of metal surfaces without chemical agents,” Preprint of Ultrason. Sonochem. (2022) (Available online: https://​ssrn.​com/​abstract=​3914052, cited December 1, 2021).
14.
Zurück zum Zitat J. A. Sarasua Miranda, L. Ruiz-Rubio, E. Aranzabe Basterrechea, et al., “An efficient green process for large surfaces with low water consumption,” Processes, 9, 585 (2021).CrossRef J. A. Sarasua Miranda, L. Ruiz-Rubio, E. Aranzabe Basterrechea, et al., “An efficient green process for large surfaces with low water consumption,” Processes, 9, 585 (2021).CrossRef
15.
Zurück zum Zitat V. F. Kazantsev, S. Y. Kuznetsov, S. K. Sundukov, et al., “Ultrasound treatment of curved contours and complex surfaces,” Russ. Eng. Res., 37, 1074 – 1076 (2017).CrossRef V. F. Kazantsev, S. Y. Kuznetsov, S. K. Sundukov, et al., “Ultrasound treatment of curved contours and complex surfaces,” Russ. Eng. Res., 37, 1074 – 1076 (2017).CrossRef
16.
Zurück zum Zitat R. I. Nigmetzyanov, V. F. Kazantsev, V. M. Prikhod’ko, et al., “Improvement in ultrasound liquid machining by activating cavitational clusters,” Russ. Eng. Res., 39, 699 – 702 (2019).CrossRef R. I. Nigmetzyanov, V. F. Kazantsev, V. M. Prikhod’ko, et al., “Improvement in ultrasound liquid machining by activating cavitational clusters,” Russ. Eng. Res., 39, 699 – 702 (2019).CrossRef
17.
Zurück zum Zitat R. Park, M. Choi, E. H. Park, et al., “Comparing cleaning effects of gas and vapor bubbles in ultrasonic fields,” Ultrason. Sonochem., 76, 105618 (2021).CrossRef R. Park, M. Choi, E. H. Park, et al., “Comparing cleaning effects of gas and vapor bubbles in ultrasonic fields,” Ultrason. Sonochem., 76, 105618 (2021).CrossRef
18.
Zurück zum Zitat B. Verhaagen, T. Zanderink, and D. F. Rivas, “Ultrasonic cleaning of 3d printed objects and cleaning challenge devices,” Appl. Acoust., 103B, 172 – 181 (2016).CrossRef B. Verhaagen, T. Zanderink, and D. F. Rivas, “Ultrasonic cleaning of 3d printed objects and cleaning challenge devices,” Appl. Acoust., 103B, 172 – 181 (2016).CrossRef
19.
Zurück zum Zitat M. O. Lamminen, H. W. Walker, and L. K. Weavers, “Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes,” J. Membr. Sci., 237(1–2), 213 – 223 (2004).CrossRef M. O. Lamminen, H. W. Walker, and L. K. Weavers, “Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes,” J. Membr. Sci., 237(1–2), 213 – 223 (2004).CrossRef
20.
Zurück zum Zitat S. Hattori and T. Itoh, “Cavitation erosion resistance of plastics,” Wear, 271(7–8), 1103 – 1108 (2011).CrossRef S. Hattori and T. Itoh, “Cavitation erosion resistance of plastics,” Wear, 271(7–8), 1103 – 1108 (2011).CrossRef
21.
Zurück zum Zitat M. Dojcinovic, O. Eric, D. Rajnovic, L. Sidjanin, and S. Balos, “Effect of austempering temperature on cavitation behavior of unalloyed ADI material,” Mater. Charact., 82, 66 – 72 (2013).CrossRef M. Dojcinovic, O. Eric, D. Rajnovic, L. Sidjanin, and S. Balos, “Effect of austempering temperature on cavitation behavior of unalloyed ADI material,” Mater. Charact., 82, 66 – 72 (2013).CrossRef
22.
Zurück zum Zitat E. H. R. Wade and C. M. Preece, “Cavitation erosion of iron and steel,” Metall. Trans. A, 9, 1299 – 1310 (1978).CrossRef E. H. R. Wade and C. M. Preece, “Cavitation erosion of iron and steel,” Metall. Trans. A, 9, 1299 – 1310 (1978).CrossRef
23.
Zurück zum Zitat F. G. Hammit, Cavitation and Multiphase Flow Phenomena, New York, McGraw Hill (1980). F. G. Hammit, Cavitation and Multiphase Flow Phenomena, New York, McGraw Hill (1980).
24.
Zurück zum Zitat J. Wang, Y. Gao, Z. You, et al., “The effect of ultrasonic cleaning on the secondary electron yield, surface topography, and surface chemistry of laser treated aluminum alloy,” Materials, 13, 296 (2020).CrossRef J. Wang, Y. Gao, Z. You, et al., “The effect of ultrasonic cleaning on the secondary electron yield, surface topography, and surface chemistry of laser treated aluminum alloy,” Materials, 13, 296 (2020).CrossRef
25.
Zurück zum Zitat S. Verdan, G. Burato, M. Comet, L. Reinert, and H. Fuzellier, “Structural changes of metallic surfaces induced by ultrasound,” Ultrason. Sonochem., 10(4–5), 291 – 295 (2003).CrossRef S. Verdan, G. Burato, M. Comet, L. Reinert, and H. Fuzellier, “Structural changes of metallic surfaces induced by ultrasound,” Ultrason. Sonochem., 10(4–5), 291 – 295 (2003).CrossRef
26.
Zurück zum Zitat Y. Zhukova, S. A. Ulasevich, J. W. C. Dunlop, et al., “Ultrasound-driven titanium modification with formation of titania based nanofoam surfaces,” Ultrason. Sonochem., 36, 146 – 154 (2017).CrossRef Y. Zhukova, S. A. Ulasevich, J. W. C. Dunlop, et al., “Ultrasound-driven titanium modification with formation of titania based nanofoam surfaces,” Ultrason. Sonochem., 36, 146 – 154 (2017).CrossRef
27.
Zurück zum Zitat Q. Jiao, X. Tan, J. Zhu, S. Feng, and J. Gao, “Effects of ultrasonic agitation and surfactant additive on surface roughness of Si (111) crystal plane in alkaline KOH solution,” Ultrason. Sonochem., 31, 222 – 226 (2016).CrossRef Q. Jiao, X. Tan, J. Zhu, S. Feng, and J. Gao, “Effects of ultrasonic agitation and surfactant additive on surface roughness of Si (111) crystal plane in alkaline KOH solution,” Ultrason. Sonochem., 31, 222 – 226 (2016).CrossRef
28.
Zurück zum Zitat Y. Zhao, C. Bao, R. Feng, and T. J. Mason, “New etching method of PVC plastic for plating by ultrasound,” J. Appl. Polym. Sci., 68(9), 1411 – 1416 (1998).CrossRef Y. Zhao, C. Bao, R. Feng, and T. J. Mason, “New etching method of PVC plastic for plating by ultrasound,” J. Appl. Polym. Sci., 68(9), 1411 – 1416 (1998).CrossRef
29.
Zurück zum Zitat V. A. Aleksandrov, S. K. Sundukov, D. S. Fatyukhin, and A. A. Filatova, “Ultrasonic methods for improving object surface quality prepared by corrosion-resistant steel powder selective laser melting,” Met. Sci. Heat Treat., 60, 381 – 386 (2018).CrossRef V. A. Aleksandrov, S. K. Sundukov, D. S. Fatyukhin, and A. A. Filatova, “Ultrasonic methods for improving object surface quality prepared by corrosion-resistant steel powder selective laser melting,” Met. Sci. Heat Treat., 60, 381 – 386 (2018).CrossRef
30.
Zurück zum Zitat S. N. Grigoriev, A. S. Metel, T. V. Tarasova, et al., “Effect of cavitation erosion wear, vibration tumbling, and heat treatment on additively manufactured surface quality and properties,” Metals, 10, 1540 (2020).CrossRef S. N. Grigoriev, A. S. Metel, T. V. Tarasova, et al., “Effect of cavitation erosion wear, vibration tumbling, and heat treatment on additively manufactured surface quality and properties,” Metals, 10, 1540 (2020).CrossRef
31.
Zurück zum Zitat D. S. Fatyukhin, “Variation in surface roughness of machine parts under ultrasonic liquid treatment,” Vest. Mosk. Avtom.-Dor. Gos. Tech. Univ. (MADI), No. 4(23), 30 – 35 (2010). D. S. Fatyukhin, “Variation in surface roughness of machine parts under ultrasonic liquid treatment,” Vest. Mosk. Avtom.-Dor. Gos. Tech. Univ. (MADI), No. 4(23), 30 – 35 (2010).
32.
Zurück zum Zitat O. V. Chudina, V. A. Aleksandrov, and D. S. Fatyukhin, “Influence of ultrasonic cavitation on the state of surface of constructional steel,” Uproch. Tech. Pokr., No. 2(74), 3 – 6 (2011). O. V. Chudina, V. A. Aleksandrov, and D. S. Fatyukhin, “Influence of ultrasonic cavitation on the state of surface of constructional steel,” Uproch. Tech. Pokr., No. 2(74), 3 – 6 (2011).
33.
Zurück zum Zitat R. Altay, A. K. Sadaghian, M. I. Sevgen, et al., “Numerical and experimental studies on the effect of surface roughness and ultrasonic frequency on bubble dynamics in acoustic cavitation,” Energies, 13, 1126 (2020).CrossRef R. Altay, A. K. Sadaghian, M. I. Sevgen, et al., “Numerical and experimental studies on the effect of surface roughness and ultrasonic frequency on bubble dynamics in acoustic cavitation,” Energies, 13, 1126 (2020).CrossRef
Metadaten
Titel
Dynamics of Surface Properties of Steel Kh12MF During Cavitation-Erosion Treatment
verfasst von
R. I. Ningmetzyanov
S. K. Sundukov
D. S. Fatyukhin
A. V. Sukhov
Publikationsdatum
07.09.2022
Verlag
Springer US
Erschienen in
Metal Science and Heat Treatment / Ausgabe 3-4/2022
Print ISSN: 0026-0673
Elektronische ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-022-00791-0

Weitere Artikel der Ausgabe 3-4/2022

Metal Science and Heat Treatment 3-4/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.