Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 11/2019

29.10.2019

Effect of AC Current Density on the Stress Corrosion Cracking Behavior and Mechanism of E690 High-Strength Steel in Simulated Seawater

verfasst von: Yue Pan, Zhiyong Liu, Yadan Zhang, Xiaogang Li, Cuiwei Du

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 11/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we studied the impact of alternating current (AC) density on the stress corrosion cracking (SCC) behavior and mechanism of E690 high-strength steel in simulated seawater with electrochemical measurements, U-bend immersion tests and slow strain rate tensile tests. Results demonstrate that AC enhances both anodic and cathodic processes, especially localized anodic dissolution and hydrogen evolution, which manifests as the increase in icorr with AC current density rising. Therefore, AC leads to higher SCC susceptibility. Accordingly, SCC is dominated by anodic dissolution (AD) at low AC current density while in a mixed control of AD and hydrogen embrittlement (HE) at high AC current density as a result of increasing hydrogen concentration. Besides, 50 A/m2 corresponds to the threshold hydrogen concentration of the “hydrogen-induced plasticity to HE” transformation, which is due to the different interactions of dislocation and hydrogen.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Ma, Z. Liu, D. Cuiwei, X. Li, and Z. Cui, Comparative Study of the SCC Behavior of E690 Steel and Simulated HAZ Microstructures in a SO2-Polluted Marine Atmosphere, Mater. Sci. Eng. A, 2016, 650, p 93–101 H. Ma, Z. Liu, D. Cuiwei, X. Li, and Z. Cui, Comparative Study of the SCC Behavior of E690 Steel and Simulated HAZ Microstructures in a SO2-Polluted Marine Atmosphere, Mater. Sci. Eng. A, 2016, 650, p 93–101
2.
Zurück zum Zitat Z. Liu, W. Hao, W. Wei, H. Luo, and X. Li, Fundamental Investigation of Stress Corrosion Cracking of E690 Steel in Simulated Marine Thin Electrolyte Layer, Corros. Sci., 2019, 148, p 388–396 Z. Liu, W. Hao, W. Wei, H. Luo, and X. Li, Fundamental Investigation of Stress Corrosion Cracking of E690 Steel in Simulated Marine Thin Electrolyte Layer, Corros. Sci., 2019, 148, p 388–396
3.
Zurück zum Zitat X. Li, D. Zhang, Z. Liu, Z. Li, D. Cuiwei, and C. Dong, Share Corrosion Data, Nature, 2015, 527, p 441–442 X. Li, D. Zhang, Z. Liu, Z. Li, D. Cuiwei, and C. Dong, Share Corrosion Data, Nature, 2015, 527, p 441–442
4.
Zurück zum Zitat Z. Liu, Z. Cui, X. Li, D. Cuiwei, and Y. Xing, Mechanistic Aspect of Stress Corrosion Cracking of X80 Pipeline Steel Under Non-stable Cathodic Polarization, Electro. Comm., 2014, 48, p 127–129 Z. Liu, Z. Cui, X. Li, D. Cuiwei, and Y. Xing, Mechanistic Aspect of Stress Corrosion Cracking of X80 Pipeline Steel Under Non-stable Cathodic Polarization, Electro. Comm., 2014, 48, p 127–129
5.
Zurück zum Zitat H. Wan, D. Song, Z. Liu, D. Cuiwei, Z. Zeng, X. Yang, and X. Li, Effect of Alternating Current on Stress Corrosion Cracking Behavior and Mechanism of X80 Pipeline Steel in Near-Neutral Solution, J. Nat. Gas Sci. Eng., 2017, 38, p 458–465 H. Wan, D. Song, Z. Liu, D. Cuiwei, Z. Zeng, X. Yang, and X. Li, Effect of Alternating Current on Stress Corrosion Cracking Behavior and Mechanism of X80 Pipeline Steel in Near-Neutral Solution, J. Nat. Gas Sci. Eng., 2017, 38, p 458–465
6.
Zurück zum Zitat H. Wan, D. Song, Z. Liu, D. Cuiwei, Z. Zeng, Z. Wang, D. Ding, and X. Li, Effect of Negative Half-Wave Alternating Current on Stress Corrosion Cracking Behavior and Mechanism of X80 Pipeline Steel in Near-Neutral Solution, Constr. Build. Mater., 2017, 154, p 580–589 H. Wan, D. Song, Z. Liu, D. Cuiwei, Z. Zeng, Z. Wang, D. Ding, and X. Li, Effect of Negative Half-Wave Alternating Current on Stress Corrosion Cracking Behavior and Mechanism of X80 Pipeline Steel in Near-Neutral Solution, Constr. Build. Mater., 2017, 154, p 580–589
7.
Zurück zum Zitat Q. Liu, W. Wu, Y. Pan, Z.Y. Liu, X.C. Zhou, and X.G. Li, Electrochemical Mechanism of Stress Corrosion Cracking of API, X70 Pipeline Steel Under Different AC Frequencies, Constr. Build. Mater., 2018, 171, p 622–633 Q. Liu, W. Wu, Y. Pan, Z.Y. Liu, X.C. Zhou, and X.G. Li, Electrochemical Mechanism of Stress Corrosion Cracking of API, X70 Pipeline Steel Under Different AC Frequencies, Constr. Build. Mater., 2018, 171, p 622–633
8.
Zurück zum Zitat D. Tang, D. Yanxia, X. Li, Y. Liang, and L. Minxu, Effect of Alternating Current on the Performance of Magnesium Sacrificial Anode, Mater. Design, 2016, 93, p 133–145 D. Tang, D. Yanxia, X. Li, Y. Liang, and L. Minxu, Effect of Alternating Current on the Performance of Magnesium Sacrificial Anode, Mater. Design, 2016, 93, p 133–145
9.
Zurück zum Zitat Y. Guo, T. Meng, D. Wang, H. Tan, and R. He, Experimental Research on the Corrosion of X Series Pipeline Steels Under Alternating Current Interference, Eng. Fail. Anal., 2017, 78, p 87–98 Y. Guo, T. Meng, D. Wang, H. Tan, and R. He, Experimental Research on the Corrosion of X Series Pipeline Steels Under Alternating Current Interference, Eng. Fail. Anal., 2017, 78, p 87–98
10.
Zurück zum Zitat V. Shkirskiy, A. Maltseva, K. Ogle, and P. Volovitch, Environmental Effects on Selective Dissolution from ZnAlMg Alloy Under Low Frequency Alternating Current Perturbations, Electrochemi. Acta, 2017, 238, p 397–409 V. Shkirskiy, A. Maltseva, K. Ogle, and P. Volovitch, Environmental Effects on Selective Dissolution from ZnAlMg Alloy Under Low Frequency Alternating Current Perturbations, Electrochemi. Acta, 2017, 238, p 397–409
11.
Zurück zum Zitat B. Wei, Q. Qin, Y. Bai, Yu Changkun, X. Jin, C. Sun, and W. Ke, Short-Period Corrosion of X80 Pipeline Steel Induced by AC Current in Acidic Red Soil, Eng. Fail. Anal., 2019, 105, p 156–175 B. Wei, Q. Qin, Y. Bai, Yu Changkun, X. Jin, C. Sun, and W. Ke, Short-Period Corrosion of X80 Pipeline Steel Induced by AC Current in Acidic Red Soil, Eng. Fail. Anal., 2019, 105, p 156–175
12.
Zurück zum Zitat R. Zhang, P.R. Vairavanathan, and S.B. Lalvani, Perturbation Method Analysis of AC-Induced Corrosion, Corros. Sci., 2008, 50, p 1664–1671 R. Zhang, P.R. Vairavanathan, and S.B. Lalvani, Perturbation Method Analysis of AC-Induced Corrosion, Corros. Sci., 2008, 50, p 1664–1671
13.
Zurück zum Zitat S. Goidanich, L. Lazzari, and M. Ormellese, AC Corrosion-Part 1: Effects on Overpotentials of Anodic and Cathodic Processes, Corros. Sci., 2010, 52, p 491–497 S. Goidanich, L. Lazzari, and M. Ormellese, AC Corrosion-Part 1: Effects on Overpotentials of Anodic and Cathodic Processes, Corros. Sci., 2010, 52, p 491–497
14.
Zurück zum Zitat S. Goidanich, L. Lazzari, and M. Ormellese, AC Corrosion-Part 2: Parameters Influencing Corrosion Rate, Corros. Sci., 2010, 52, p 916–922 S. Goidanich, L. Lazzari, and M. Ormellese, AC Corrosion-Part 2: Parameters Influencing Corrosion Rate, Corros. Sci., 2010, 52, p 916–922
15.
Zurück zum Zitat D. Kuang and Y.F. Cheng, Understand the AC Induced Pitting Corrosion of Pipelines in Both High pH and Neutral pH Carbonate/Bicarbonate Solutions, Corros. Sci., 2014, 85, p 304–310 D. Kuang and Y.F. Cheng, Understand the AC Induced Pitting Corrosion of Pipelines in Both High pH and Neutral pH Carbonate/Bicarbonate Solutions, Corros. Sci., 2014, 85, p 304–310
16.
Zurück zum Zitat W. Hao, Z. Liu, W. Wei, X. Li, D. Cuiwei, and D. Zhang, Electrochemical Characterization and Stress Corrosion Cracking of E690 High Strength Steel in Wet-Dry Cyclic Marine Environments, Mater. Sci. Eng., A, 2018, 710, p 318–328 W. Hao, Z. Liu, W. Wei, X. Li, D. Cuiwei, and D. Zhang, Electrochemical Characterization and Stress Corrosion Cracking of E690 High Strength Steel in Wet-Dry Cyclic Marine Environments, Mater. Sci. Eng., A, 2018, 710, p 318–328
17.
Zurück zum Zitat H. Ma, Z. Liu, D. Cuiwei, H. Wang, X. Li, D. Zhang, and Z. Cui, Stress Corrosion Cracking of E690 Steel as a Welded Joint in a Simulated Marine Atmosphere Containing Sulphur Dioxide, Corros. Sci., 2015, 100, p 627–641 H. Ma, Z. Liu, D. Cuiwei, H. Wang, X. Li, D. Zhang, and Z. Cui, Stress Corrosion Cracking of E690 Steel as a Welded Joint in a Simulated Marine Atmosphere Containing Sulphur Dioxide, Corros. Sci., 2015, 100, p 627–641
18.
Zurück zum Zitat Chinese National Standard for Stress Corrosion Cracking Tests. GB/T 15970, 2007 Chinese National Standard for Stress Corrosion Cracking Tests. GB/T 15970, 2007
19.
Zurück zum Zitat M. Zhu, D. Cuiwei, X. Li, Z. Liu, H. Li, and D. Zhang, Effect of AC on Stress Corrosion Cracking Behavior and Mechanism of X80 Pipeline Steel in Carbonate/Bicarbonate Solution, Corros. Sci., 2014, 87, p 224–232 M. Zhu, D. Cuiwei, X. Li, Z. Liu, H. Li, and D. Zhang, Effect of AC on Stress Corrosion Cracking Behavior and Mechanism of X80 Pipeline Steel in Carbonate/Bicarbonate Solution, Corros. Sci., 2014, 87, p 224–232
20.
Zurück zum Zitat W. Wei, Y. Pan, Z. Liu, D. Cuiwei, and X. Li, Electrochemical and Stress Corrosion Mechanism of Submarine Pipeline in Simulated Seawater in Presence of Different Alternating Current Densities, Materials, 2018, 11(7), p 1074 W. Wei, Y. Pan, Z. Liu, D. Cuiwei, and X. Li, Electrochemical and Stress Corrosion Mechanism of Submarine Pipeline in Simulated Seawater in Presence of Different Alternating Current Densities, Materials, 2018, 11(7), p 1074
22.
Zurück zum Zitat Z. Cui, F. Ge, Y. Lin, L. Wang, L. Lei, H. Tian, Yu Mingdong, and X. Wang, Corrosion Behavior of AZ31 Magnesium Alloy in the Chloride Solution Containing Ammonium Nitrate, Electrochemi. Acta, 2018, 278, p 421–437 Z. Cui, F. Ge, Y. Lin, L. Wang, L. Lei, H. Tian, Yu Mingdong, and X. Wang, Corrosion Behavior of AZ31 Magnesium Alloy in the Chloride Solution Containing Ammonium Nitrate, Electrochemi. Acta, 2018, 278, p 421–437
23.
Zurück zum Zitat Z. Jiang, D. Yanxia, L. Minxu, Y. Zhang, D. Tang, and L. Dong, New Findings on the Factors Accelerating AC Corrosion of Buried Pipeline, Corros. Sci., 2014, 81, p 1–10 Z. Jiang, D. Yanxia, L. Minxu, Y. Zhang, D. Tang, and L. Dong, New Findings on the Factors Accelerating AC Corrosion of Buried Pipeline, Corros. Sci., 2014, 81, p 1–10
24.
Zurück zum Zitat A. Nazarov, F. Vucko, and D. Thierry, Scanning Kelvin Probe for Detection of the Hydrogen Induced by Atmospheric Corrosion of Ultra-high Strength Steel, Electrochemi. Acta, 2016, 216, p 130–139 A. Nazarov, F. Vucko, and D. Thierry, Scanning Kelvin Probe for Detection of the Hydrogen Induced by Atmospheric Corrosion of Ultra-high Strength Steel, Electrochemi. Acta, 2016, 216, p 130–139
25.
Zurück zum Zitat Y. Chen, S. Zheng, J. Zhou, P. Wang, L. Chen, and Y. Qi, Influence of H2S Interaction with Prestrain on the Mechanical Properties of High-Strength X80 Steel, Inter. J. Hydrog. Energy, 2016, 41, p 10412–10420 Y. Chen, S. Zheng, J. Zhou, P. Wang, L. Chen, and Y. Qi, Influence of H2S Interaction with Prestrain on the Mechanical Properties of High-Strength X80 Steel, Inter. J. Hydrog. Energy, 2016, 41, p 10412–10420
26.
Zurück zum Zitat Z.Y. Liu, X.Z. Wang, C.W. Du, J.K. Li, and X.G. Li, Effect of Hydrogen-Induced Plasticity on the Stress Corrosion Cracking of X70 Pipeline Steel in Simulated Soil Environments, Mater. Sci. Eng., A, 2016, 658, p 348–354 Z.Y. Liu, X.Z. Wang, C.W. Du, J.K. Li, and X.G. Li, Effect of Hydrogen-Induced Plasticity on the Stress Corrosion Cracking of X70 Pipeline Steel in Simulated Soil Environments, Mater. Sci. Eng., A, 2016, 658, p 348–354
27.
Zurück zum Zitat K. Tang, Stray Alternating Current (AC) Induced Corrosion of Steel Fibre Reinforced Concrete, Corros. Sci., 2019, 152, p 153–171 K. Tang, Stray Alternating Current (AC) Induced Corrosion of Steel Fibre Reinforced Concrete, Corros. Sci., 2019, 152, p 153–171
28.
Zurück zum Zitat F. Xue, X. Wei, J. Dong, C. Wang, and W. Ke, Effect of Chloride Ion on Corrosion Behavior of Low Carbon Steel in 0.1 M NaHCO3 Solution with Different Dissolved Oxygen Concentrations, J. Mater. Sci. Technol., 2019, 35, p 596–603 F. Xue, X. Wei, J. Dong, C. Wang, and W. Ke, Effect of Chloride Ion on Corrosion Behavior of Low Carbon Steel in 0.1 M NaHCO3 Solution with Different Dissolved Oxygen Concentrations, J. Mater. Sci. Technol., 2019, 35, p 596–603
29.
Zurück zum Zitat M. Büchler, Alternating Current Corrosion of Cathodically Protected Pipelines: Discussion of the Involved Processes and Their Consequences on the Critical Interference Values, Mater. Corros., 2012, 63, p 1181–1187 M. Büchler, Alternating Current Corrosion of Cathodically Protected Pipelines: Discussion of the Involved Processes and Their Consequences on the Critical Interference Values, Mater. Corros., 2012, 63, p 1181–1187
30.
Zurück zum Zitat C. Wen, J. Li, S. Wang, and Y. Yang, Experimental Study on Stray Current Corrosion of Coated Pipeline Steel, J. Nat. Gas Sci. Eng., 2015, 27, p 1555–1561 C. Wen, J. Li, S. Wang, and Y. Yang, Experimental Study on Stray Current Corrosion of Coated Pipeline Steel, J. Nat. Gas Sci. Eng., 2015, 27, p 1555–1561
31.
Zurück zum Zitat L. Wang, L. Cheng, J. Li, Z. Zhu, S. Bai, and Z. Cui, Combined Effect of Alternating Current Interference and Cathodic Protection on Pitting Corrosion and Stress Corrosion Cracking Behavior of X70 Pipeline Steel in Near-Neutral pH Environment, Materials, 2018, 11, p 465 L. Wang, L. Cheng, J. Li, Z. Zhu, S. Bai, and Z. Cui, Combined Effect of Alternating Current Interference and Cathodic Protection on Pitting Corrosion and Stress Corrosion Cracking Behavior of X70 Pipeline Steel in Near-Neutral pH Environment, Materials, 2018, 11, p 465
32.
Zurück zum Zitat Z.Y. Liu, X.G. Li, C.W. Du, and Y.F. Cheng, Local Additional Potential Model for Effect of Strain Rate on SCC of Pipeline Steel in an Acidic Soil Solution, Corros. Sci., 2009, 51, p 2863–2871 Z.Y. Liu, X.G. Li, C.W. Du, and Y.F. Cheng, Local Additional Potential Model for Effect of Strain Rate on SCC of Pipeline Steel in an Acidic Soil Solution, Corros. Sci., 2009, 51, p 2863–2871
33.
Zurück zum Zitat Z.Y. Liu, X.G. Li, and Y.F. Cheng, Electrochemical State Conversion Model for Occurrence of Pitting Corrosion on Cathodically Polarized Carbon Steel in a Near-Neutral pH Solution, Electrochemi. Acta, 2011, 56, p 4167–4175 Z.Y. Liu, X.G. Li, and Y.F. Cheng, Electrochemical State Conversion Model for Occurrence of Pitting Corrosion on Cathodically Polarized Carbon Steel in a Near-Neutral pH Solution, Electrochemi. Acta, 2011, 56, p 4167–4175
34.
Zurück zum Zitat X.S. Du, W.B. Cao, C.D. Wang, S.J. Li, J.Y. Zhao, and Y.F. Sun, Effect of Microstructures and Inclusions on Hydrogen-Induced Cracking and Blistering of A537 Steel, Mater. Sci. Eng. A, 2015, 642, p 181–186 X.S. Du, W.B. Cao, C.D. Wang, S.J. Li, J.Y. Zhao, and Y.F. Sun, Effect of Microstructures and Inclusions on Hydrogen-Induced Cracking and Blistering of A537 Steel, Mater. Sci. Eng. A, 2015, 642, p 181–186
35.
Zurück zum Zitat C. Zhou, B. Ye, Y. Song, T. Cui, X. Peng, and L. Zhang, Effects of Internal Hydrogen and Surface-Absorbed Hydrogen on the Hydrogen Embrittlement of X80 Pipeline Steel, Inter. J. Hydrog. Energy, 2019, 44, p 22547–22558 C. Zhou, B. Ye, Y. Song, T. Cui, X. Peng, and L. Zhang, Effects of Internal Hydrogen and Surface-Absorbed Hydrogen on the Hydrogen Embrittlement of X80 Pipeline Steel, Inter. J. Hydrog. Energy, 2019, 44, p 22547–22558
36.
Zurück zum Zitat W. Mai and S. Soghrati, A Phase Field Model for Simulating the Stress Corrosion Cracking Initiated from Pits, Corros. Sci., 2017, 125, p 87–98 W. Mai and S. Soghrati, A Phase Field Model for Simulating the Stress Corrosion Cracking Initiated from Pits, Corros. Sci., 2017, 125, p 87–98
37.
Zurück zum Zitat D.A. Horner, B.J. Connolly, S. Zhou, L. Crocker, and A. Turnbull, Novel Images of the Evolution of Stress Corrosion Cracks from Corrosion Pits, Corros. Sci., 2011, 53, p 3466–3485 D.A. Horner, B.J. Connolly, S. Zhou, L. Crocker, and A. Turnbull, Novel Images of the Evolution of Stress Corrosion Cracks from Corrosion Pits, Corros. Sci., 2011, 53, p 3466–3485
38.
Zurück zum Zitat L. Wang, J. Xin, L. Cheng, K. Zhao, B. Sun, J. Li, X. Wang, and Z. Cui, Influence of Inclusions on Initiation of Pitting Corrosion and Stress Corrosion Cracking of X70 Steel in Near-Neutral pH Environment, Corros. Sci., 2019, 147, p 108–127 L. Wang, J. Xin, L. Cheng, K. Zhao, B. Sun, J. Li, X. Wang, and Z. Cui, Influence of Inclusions on Initiation of Pitting Corrosion and Stress Corrosion Cracking of X70 Steel in Near-Neutral pH Environment, Corros. Sci., 2019, 147, p 108–127
39.
Zurück zum Zitat I.M. Dmytrakh, R.L. Leshchak, A.M. Syrotyuk, and R.A. Barna, Effect of Hydrogen Concentration on Fatigue Crack Growth Behaviour in Pipeline Steel, Inter. J. Hydrogen Energy, 2017, 42, p 6401–6408 I.M. Dmytrakh, R.L. Leshchak, A.M. Syrotyuk, and R.A. Barna, Effect of Hydrogen Concentration on Fatigue Crack Growth Behaviour in Pipeline Steel, Inter. J. Hydrogen Energy, 2017, 42, p 6401–6408
40.
Zurück zum Zitat K.S. de Assis, M.A. Lage, G. Guttemberg, F.P. dos Santos, and O.R. Mattos, Influence of Hydrogen on Plasticity Around the Crack Tip in High Strength Steels, Eng. Fract. Mech., 2017, 176, p 116–125 K.S. de Assis, M.A. Lage, G. Guttemberg, F.P. dos Santos, and O.R. Mattos, Influence of Hydrogen on Plasticity Around the Crack Tip in High Strength Steels, Eng. Fract. Mech., 2017, 176, p 116–125
41.
Zurück zum Zitat S.D. Pu and S.W. Ooi, Hydrogen Transport by Dislocation Movement in Austenitic Steel, Mat. Sci. Eng. A, 2019, 761, p 138059 S.D. Pu and S.W. Ooi, Hydrogen Transport by Dislocation Movement in Austenitic Steel, Mat. Sci. Eng. A, 2019, 761, p 138059
42.
Zurück zum Zitat H. Tian, X. Wang, Z. Cui, L. Qiankun, L. Wang, L. Lei, Y. Li, and D. Zhang, Electrochemical Corrosion, Hydrogen Permeation and Stress Corrosion Cracking Behavior of E690 Steel in Thiosulfate-Containing Artificial Seawater, Corros. Sci., 2018, 144, p 145–162 H. Tian, X. Wang, Z. Cui, L. Qiankun, L. Wang, L. Lei, Y. Li, and D. Zhang, Electrochemical Corrosion, Hydrogen Permeation and Stress Corrosion Cracking Behavior of E690 Steel in Thiosulfate-Containing Artificial Seawater, Corros. Sci., 2018, 144, p 145–162
43.
Zurück zum Zitat E. Ohaeri, U. Eduok, and J. Szpunar, Hydrogen Related Degradation in Pipeline Steel: A Review, Int. J. Hydrog. Energy, 2018, 43, p 14584–14617 E. Ohaeri, U. Eduok, and J. Szpunar, Hydrogen Related Degradation in Pipeline Steel: A Review, Int. J. Hydrog. Energy, 2018, 43, p 14584–14617
Metadaten
Titel
Effect of AC Current Density on the Stress Corrosion Cracking Behavior and Mechanism of E690 High-Strength Steel in Simulated Seawater
verfasst von
Yue Pan
Zhiyong Liu
Yadan Zhang
Xiaogang Li
Cuiwei Du
Publikationsdatum
29.10.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 11/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04405-4

Weitere Artikel der Ausgabe 11/2019

Journal of Materials Engineering and Performance 11/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.