Skip to main content
Erschienen in: Metal Science and Heat Treatment 9-10/2024

20.02.2024 | CAST IRONS

Effect of Aluminum, Copper and Manganese on the Structure and Properties of Cast Irons

verfasst von: N. V. Stepanova, R. I. Mikhalev, T. D. Tarasova, S. S. Volkov

Erschienen in: Metal Science and Heat Treatment | Ausgabe 9-10/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of aluminum, copper and manganese on the structure, mechanical and tribotechnical properties of cast irons is studied. Cast irons of three types (aluminum-alloyed, aluminum- and copper-alloyed, and aluminum-, copper- and manganese-alloyed ones) are obtained by casting into sand-liquid-glass molds. The structure of the iron containing aluminum and copper acquires nanosize particles of phase ε-Cu promoting increase in the hardness and strength of the material. Alloying with aluminum, copper and manganese yields a structure where pearlite is accompanied by microvolumes of martensite and retained austenite. Particles of ε-Cu are detectable both within the colonies of lamellar pearlite and inside martensite crystals. The presence of martensite in the structure of the cast iron raises its wear resistance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W. Osterle, C. Prietzel, Kloss, and A. I. Dmitriev, “On the role of copper in brake friction materials,” Tribol. Int., 43, 2317 – 2326 (2010). W. Osterle, C. Prietzel, Kloss, and A. I. Dmitriev, “On the role of copper in brake friction materials,” Tribol. Int., 43, 2317 – 2326 (2010).
2.
Zurück zum Zitat J. O. Agunsoye, S. A. Bello, S. B. Hassan, et al., “The effect of copper addition on the mechanical and wear properties of grey cast iron,” JMMC Eng., 2, 470 – 483 (2014).CrossRef J. O. Agunsoye, S. A. Bello, S. B. Hassan, et al., “The effect of copper addition on the mechanical and wear properties of grey cast iron,” JMMC Eng., 2, 470 – 483 (2014).CrossRef
3.
Zurück zum Zitat B. Zhang, B. Xu, and Yi Xu, “Cu nanoparticles effect on the tribological properties of hydrosilicate powders as lubricant additive for steel-steel contacts,” Tribol. Int., 44(7), 878 – 886 (2011). B. Zhang, B. Xu, and Yi Xu, “Cu nanoparticles effect on the tribological properties of hydrosilicate powders as lubricant additive for steel-steel contacts,” Tribol. Int., 44(7), 878 – 886 (2011).
4.
Zurück zum Zitat W. Zhai,W. Lu, and X. Liu, “Nanodiamond as an effective additive in oil to dramatically reduce friction and wear for fretting steel/copper interfaces,” Tribol. Int., 129, 75 – 81 (2019).CrossRef W. Zhai,W. Lu, and X. Liu, “Nanodiamond as an effective additive in oil to dramatically reduce friction and wear for fretting steel/copper interfaces,” Tribol. Int., 129, 75 – 81 (2019).CrossRef
5.
Zurück zum Zitat A. C. P. Rodrigues,W. Oesterle, and T. Gradt, “Impact of copper nanoparticles on tribofilm formation determined by pin-on-disc tests with powder supply: Addition of artificial third body consisting of Fe3O4, Cu and graphite,” Tribol. Int., 110, 103 – 112 (2017).CrossRef A. C. P. Rodrigues,W. Oesterle, and T. Gradt, “Impact of copper nanoparticles on tribofilm formation determined by pin-on-disc tests with powder supply: Addition of artificial third body consisting of Fe3O4, Cu and graphite,” Tribol. Int., 110, 103 – 112 (2017).CrossRef
6.
Zurück zum Zitat M. Eroglu, “Boride coatings on steel using shielded metal arc welding electrode: microstructure and hardness,” Surf. Coat. Technol., 203, 2229 – 2235 (2009).CrossRef M. Eroglu, “Boride coatings on steel using shielded metal arc welding electrode: microstructure and hardness,” Surf. Coat. Technol., 203, 2229 – 2235 (2009).CrossRef
7.
Zurück zum Zitat G. I. Silman, V. V. Kamynin, and V. V. Goncharov, “About the mechanisms of copper influence on formation of structure in cast iron,” Metalloved. Term. Obrab. Met., No. 9, 16 – 22 (2007). G. I. Silman, V. V. Kamynin, and V. V. Goncharov, “About the mechanisms of copper influence on formation of structure in cast iron,” Metalloved. Term. Obrab. Met., No. 9, 16 – 22 (2007).
8.
Zurück zum Zitat I. Le May and L. Schetky, Copper in Iron and Steel, McD,Wiley Interscience, New York (1982). I. Le May and L. Schetky, Copper in Iron and Steel, McD,Wiley Interscience, New York (1982).
9.
Zurück zum Zitat A. A. Bataev, N. V. Stepanova, I. A. Bataev, et al., “Special features of precipitation of ε-Cu phase in cast irons alloyed with copper and aluminum,” Met. Sci. Heat Treat., 60(3 – 4), 150 – 157 (2018).CrossRef A. A. Bataev, N. V. Stepanova, I. A. Bataev, et al., “Special features of precipitation of ε-Cu phase in cast irons alloyed with copper and aluminum,” Met. Sci. Heat Treat., 60(3 – 4), 150 – 157 (2018).CrossRef
10.
Zurück zum Zitat N. V. Stepanova, I. A. Bataev, Y. Kang, et al. “Composites of copper and cast iron fabricated via the liquid: In the vicinity of the limits of strength in a non-deformed condition,” Mater. Charact., 130, 260 – 269 (2017).CrossRef N. V. Stepanova, I. A. Bataev, Y. Kang, et al. “Composites of copper and cast iron fabricated via the liquid: In the vicinity of the limits of strength in a non-deformed condition,” Mater. Charact., 130, 260 – 269 (2017).CrossRef
11.
Zurück zum Zitat S. Upadhyay and K. K. Saxena, “Effect of Cu and Mo addition on mechanical properties and microstructure of grey cast iron: An overview,” Mater. Today, Proceed., 26(2), 2462 – 2470 (2020).CrossRef S. Upadhyay and K. K. Saxena, “Effect of Cu and Mo addition on mechanical properties and microstructure of grey cast iron: An overview,” Mater. Today, Proceed., 26(2), 2462 – 2470 (2020).CrossRef
12.
Zurück zum Zitat H. Sazegaran, F. Teimoori, H. Rastegarian, and A. M. Naserian-Nik, “Effects of aluminum and copper on the graphite morphology, microstructure, and compressive properties of ductile iron,” J. Min. Metall. B, 57(1), 145 – 154 (2021).CrossRef H. Sazegaran, F. Teimoori, H. Rastegarian, and A. M. Naserian-Nik, “Effects of aluminum and copper on the graphite morphology, microstructure, and compressive properties of ductile iron,” J. Min. Metall. B, 57(1), 145 – 154 (2021).CrossRef
13.
Zurück zum Zitat L. N. Garcia, A. J. Tolley, F. D. Carazo, and R. E. Boeri, “Identification of Cu-rich precipitates in pearlitic spheroidal graphite cast irons,” Mater. Sci. Technol., 35(18), 2252 – 2258 (2019).CrossRef L. N. Garcia, A. J. Tolley, F. D. Carazo, and R. E. Boeri, “Identification of Cu-rich precipitates in pearlitic spheroidal graphite cast irons,” Mater. Sci. Technol., 35(18), 2252 – 2258 (2019).CrossRef
14.
Zurück zum Zitat G. I. Sil’man, V. V. Kamynin, and A. A. Tarasov, “Effect of copper on structure formation in cast iron,” Met. Sci. Heat Treat., 45(7 – 8), 254 – 258 (2003). G. I. Sil’man, V. V. Kamynin, and A. A. Tarasov, “Effect of copper on structure formation in cast iron,” Met. Sci. Heat Treat., 45(7 – 8), 254 – 258 (2003).
15.
Zurück zum Zitat K. Shubhank and Y. Kang, “Critical evaluation and thermodynamic optimization of Fe – Cu, Cu – C, Fe – C binary systems and Fe – Cu – C ternary system,” CALPHAD, 45, 127 – 137 (2014).CrossRef K. Shubhank and Y. Kang, “Critical evaluation and thermodynamic optimization of Fe – Cu, Cu – C, Fe – C binary systems and Fe – Cu – C ternary system,” CALPHAD, 45, 127 – 137 (2014).CrossRef
16.
Zurück zum Zitat G. I. Sil’man, “About retrograde solidus and stratification of melt in the Fe – Cu and Fe – Cu – C systems,” Met. Sci. Heat Treat., 51(1 – 2), 19 – 24 (2009). G. I. Sil’man, “About retrograde solidus and stratification of melt in the Fe – Cu and Fe – Cu – C systems,” Met. Sci. Heat Treat., 51(1 – 2), 19 – 24 (2009).
17.
Zurück zum Zitat D. V. Lazurenko, G. I. Alferova, K. I. Emurlaev, et al., “Formation of wear-resistant copper-bearing layers on the surfaces of steel substrates by non-vacuum electron beam cladding using powder mixtures,” Surf. Coat. Technol., 395, Art. 125927 (2020). D. V. Lazurenko, G. I. Alferova, K. I. Emurlaev, et al., “Formation of wear-resistant copper-bearing layers on the surfaces of steel substrates by non-vacuum electron beam cladding using powder mixtures,” Surf. Coat. Technol., 395, Art. 125927 (2020).
18.
Zurück zum Zitat G. W. Zhang, Y. Y. Kang, M. J. Wang, et al., “Atomic diffusion behavior and diffusion mechanism in Fe – Cu bimetal casting process studied by molecular dynamics simulation and experiment,” Mater. Res. Express., 7, Art. 096519 (2020). G. W. Zhang, Y. Y. Kang, M. J. Wang, et al., “Atomic diffusion behavior and diffusion mechanism in Fe – Cu bimetal casting process studied by molecular dynamics simulation and experiment,” Mater. Res. Express., 7, Art. 096519 (2020).
19.
Zurück zum Zitat K. Chen, X. Chen, Z. Wang, and H. M. R. Sandstrom, “Optimization of deformation properties in as-cast copper by microstructural engineering. Part I. Microstructure,” J. Alloys Compd., 763, 592 – 605 (2018).CrossRef K. Chen, X. Chen, Z. Wang, and H. M. R. Sandstrom, “Optimization of deformation properties in as-cast copper by microstructural engineering. Part I. Microstructure,” J. Alloys Compd., 763, 592 – 605 (2018).CrossRef
20.
Zurück zum Zitat D. M. Buck, “Copper in steel — the influence on corrosion,” J. Ind. Eng. Chem., 5(6), 447 – 452 (1913).CrossRef D. M. Buck, “Copper in steel — the influence on corrosion,” J. Ind. Eng. Chem., 5(6), 447 – 452 (1913).CrossRef
21.
Zurück zum Zitat B. Li, H. Qu, and Y. Lang, “Copper alloying content effect on pitting resistance of modified 00Cr20Ni18Mo6CuN super austenitic stainless steels,” Corros. Sci., 173, Art. 108791 (2020). B. Li, H. Qu, and Y. Lang, “Copper alloying content effect on pitting resistance of modified 00Cr20Ni18Mo6CuN super austenitic stainless steels,” Corros. Sci., 173, Art. 108791 (2020).
22.
Zurück zum Zitat X. Y. Zhang, B. Wu, X. X. Wei, et al., “Investigating the effect of Cu-rich phase on the corrosion behavior of Super 304H austenitic stainless steel by TEM,” Corros. Sci., 130, 143 – 152 (2018).CrossRef X. Y. Zhang, B. Wu, X. X. Wei, et al., “Investigating the effect of Cu-rich phase on the corrosion behavior of Super 304H austenitic stainless steel by TEM,” Corros. Sci., 130, 143 – 152 (2018).CrossRef
23.
Zurück zum Zitat Z. X. Zhang, G. Lin and Z. Xu, “Effects of light pre-deformation on pitting corrosion resistance of copper – bearing ferrite antibacterial stainless steel,” J. Mater. Process. Technol., 205, 419 – 424 (2008).CrossRef Z. X. Zhang, G. Lin and Z. Xu, “Effects of light pre-deformation on pitting corrosion resistance of copper – bearing ferrite antibacterial stainless steel,” J. Mater. Process. Technol., 205, 419 – 424 (2008).CrossRef
24.
Zurück zum Zitat S. Jeon, S. Kim, I. Lee, et al., “Effects of copper addition on the formation of inclusions and the resistance to pitting corrosion of high Performance duplex stainless steels,” Corros. Sci., 53, 1408 – 1416 (2011).CrossRef S. Jeon, S. Kim, I. Lee, et al., “Effects of copper addition on the formation of inclusions and the resistance to pitting corrosion of high Performance duplex stainless steels,” Corros. Sci., 53, 1408 – 1416 (2011).CrossRef
25.
Zurück zum Zitat J. Zhang and D. J. Young, “Effect of copper on metal dusting of austenitic stainless steels,” Corros. Sci., 49, 1450 – 1467 (2007).CrossRef J. Zhang and D. J. Young, “Effect of copper on metal dusting of austenitic stainless steels,” Corros. Sci., 49, 1450 – 1467 (2007).CrossRef
26.
Zurück zum Zitat A. Hegde and S. Sharma, “Machinability study of manganese alloyed austempered ductile iron,” J. Braz. Soc. Mech. Sci., 40(7), Art. 338 (2018). A. Hegde and S. Sharma, “Machinability study of manganese alloyed austempered ductile iron,” J. Braz. Soc. Mech. Sci., 40(7), Art. 338 (2018).
27.
Zurück zum Zitat R. K. Dasgupta, D. K. Mondal, and A. K. Chakrabarti, “Evolution of microstructures during austempering of ductile irons alloyed with manganese and copper,” Metall. Mater. Trans. A, 44A, 1376 – 1387 (2013).CrossRef R. K. Dasgupta, D. K. Mondal, and A. K. Chakrabarti, “Evolution of microstructures during austempering of ductile irons alloyed with manganese and copper,” Metall. Mater. Trans. A, 44A, 1376 – 1387 (2013).CrossRef
28.
Zurück zum Zitat Susil K. Putatunda and Pavan K. Gadicherla, “Influence of austenitizing temperature on fracture toughness of a low manganese austempered ductile iron (ADI) with ferritic as cast structure,” Mater. Sci. Eng. A, 268, 15 – 31 (1990).CrossRef Susil K. Putatunda and Pavan K. Gadicherla, “Influence of austenitizing temperature on fracture toughness of a low manganese austempered ductile iron (ADI) with ferritic as cast structure,” Mater. Sci. Eng. A, 268, 15 – 31 (1990).CrossRef
29.
Zurück zum Zitat Susil K. Putatunda and Pavan K. Gadicherla, “Effect of austempering time on mechanical properties of a low manganese austempered ductile iron,” J. Mater. Eng. Perform., 9(2), 193 – 203 (2000).CrossRef Susil K. Putatunda and Pavan K. Gadicherla, “Effect of austempering time on mechanical properties of a low manganese austempered ductile iron,” J. Mater. Eng. Perform., 9(2), 193 – 203 (2000).CrossRef
30.
Zurück zum Zitat Jian Yang, Yu-Nan Wang, Xiao-Ming Ruan, et al., “Effects of manganese content on solidification structures, thermal properties, and phase transformation characteristics in Fe – Mn – Al – C steels,” Metall. Mater. Trans. B, 46B, 1365 – 1375 (2015).CrossRef Jian Yang, Yu-Nan Wang, Xiao-Ming Ruan, et al., “Effects of manganese content on solidification structures, thermal properties, and phase transformation characteristics in Fe – Mn – Al – C steels,” Metall. Mater. Trans. B, 46B, 1365 – 1375 (2015).CrossRef
31.
Zurück zum Zitat L. S. Pechenkina, “Effect of the content of structure-forming components on the hardness of low-carbon white cast irons,” Vestn. Voronezh. Gos. Tekh. Univ., 13(3), 134 – 138 (2017). L. S. Pechenkina, “Effect of the content of structure-forming components on the hardness of low-carbon white cast irons,” Vestn. Voronezh. Gos. Tekh. Univ., 13(3), 134 – 138 (2017).
32.
Zurück zum Zitat R. Kh. Gimaletdinov, A. A. Gulakov, and I. Kh. Tukhvatulin, “Effect of chemical composition on the properties of working layer of centrifugally cast indefinite forming rolls,” Vestn. Magnitogorsk. Gos. Tekh. Univ. Im. G. I. Nosova, 14(3), 78 – 89 (2016). R. Kh. Gimaletdinov, A. A. Gulakov, and I. Kh. Tukhvatulin, “Effect of chemical composition on the properties of working layer of centrifugally cast indefinite forming rolls,” Vestn. Magnitogorsk. Gos. Tekh. Univ. Im. G. I. Nosova, 14(3), 78 – 89 (2016).
33.
Zurück zum Zitat R. Kh. Gimaletdinov, A. A. Gulakov, and I. Kh. Tukhvatulin, “Effect of chemical composition on the performance of centrifugally cast indefinite chilled cast iron rolls,” Vestn. Magnitogorsk. Gos. Tekh. Univ. Im. G. I. Nosova, 17(1), 32 – 36 (2019). R. Kh. Gimaletdinov, A. A. Gulakov, and I. Kh. Tukhvatulin, “Effect of chemical composition on the performance of centrifugally cast indefinite chilled cast iron rolls,” Vestn. Magnitogorsk. Gos. Tekh. Univ. Im. G. I. Nosova, 17(1), 32 – 36 (2019).
34.
Zurück zum Zitat R. H. Juneja, A. K. Chakrabarti, A. K. Basak, and A. Bhattacharya, “Austempering ductile iron alloyed copper and manganese,” Foundry Manag. Tech., 117(2), 64 – 67 (1989). R. H. Juneja, A. K. Chakrabarti, A. K. Basak, and A. Bhattacharya, “Austempering ductile iron alloyed copper and manganese,” Foundry Manag. Tech., 117(2), 64 – 67 (1989).
35.
Zurück zum Zitat H. Bayati, R. Elliott, and G. W. J. Lorimer, “Stepped heat treatment for austempering of high manganese alloyed ductile iron,” Mater. Sci. Tech., 11(10), 1007 – 1013 (1995).CrossRef H. Bayati, R. Elliott, and G. W. J. Lorimer, “Stepped heat treatment for austempering of high manganese alloyed ductile iron,” Mater. Sci. Tech., 11(10), 1007 – 1013 (1995).CrossRef
Metadaten
Titel
Effect of Aluminum, Copper and Manganese on the Structure and Properties of Cast Irons
verfasst von
N. V. Stepanova
R. I. Mikhalev
T. D. Tarasova
S. S. Volkov
Publikationsdatum
20.02.2024
Verlag
Springer US
Erschienen in
Metal Science and Heat Treatment / Ausgabe 9-10/2024
Print ISSN: 0026-0673
Elektronische ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-024-00984-9

Weitere Artikel der Ausgabe 9-10/2024

Metal Science and Heat Treatment 9-10/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.