Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2016

22.07.2016

Effect of Cadmium Plating Thickness on the Charpy Impact Energy of Hydrogen-Charged 4340 Steel

verfasst von: O. S. Es-Said, J. Alcisto, J. Guerra, E. Jones, A. Dominguez, M. Hahn, N. Ula, L. Zeng, B. Ramsey, H. Mulazimoglu, Yong-Jun Li, M. Miller, J. Alrashid, M. Papakyriakou, S. Kalnaus, E. W. Lee, W. E. Frazier

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hydrogen was intentionally introduced into ultra-high strength steel by cadmium plating. The purpose was to examine the effect of cadmium plate thickness and hence hydrogen on the impact energy of the steel. The AISI 4340 steel was austenitized at 1000 °C for 1 h, water quenched, and tempered at temperatures between 257 and 593 °C in order to achieve a range of targeted strength levels. The specimens were cadmium plated with 0.00508 mm (0.2 mils), 0.00762 mm (0.3 mils), and 0.0127 mm (0.5 mils). Results demonstrated that the uncharged specimens exhibited higher impact energy values when compared to the plated specimens at all tempering temperatures. The cadmium-plated specimens had very low Charpy impact values irrespective of their ultimate tensile strength values. The model of hydrogen transport by mobile dislocations to the fracture site appears to provide the most suitable explanation of the results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G.L. Nash, H. Choo, P. Nash, L.L. Daemen, and M.A.M. Bourke, Lattice Dilation in a Hydrogen Charged Steel, International Centre for Diffraction Data, Adv. X-Ray Anal., 2003, 46, p 238–239 G.L. Nash, H. Choo, P. Nash, L.L. Daemen, and M.A.M. Bourke, Lattice Dilation in a Hydrogen Charged Steel, International Centre for Diffraction Data, Adv. X-Ray Anal., 2003, 46, p 238–239
2.
Zurück zum Zitat J.M. Tartaglia, K.A. Lazzari, G.P. Hui, and K.L. Hayrynen, A Comparison of Mechanical Properties and Hydrogen Embrittlement Resistance of Austempered vs Quenched and Tempered 4340 Steel, J. Metall. Mater. Trans. A., 2008, 39A, p 559–576CrossRef J.M. Tartaglia, K.A. Lazzari, G.P. Hui, and K.L. Hayrynen, A Comparison of Mechanical Properties and Hydrogen Embrittlement Resistance of Austempered vs Quenched and Tempered 4340 Steel, J. Metall. Mater. Trans. A., 2008, 39A, p 559–576CrossRef
3.
Zurück zum Zitat H. Uyama, M. Nakashima, K. Morishige, Y. Mine, and Y. Murakami, Effects of Hydrogen Charge on Microscopic Fatigue Behavior of Annealed Carbon Steels, J. Fatigue Fract. Eng. Mater. Struct., 2006, 29, p 1066–1074CrossRef H. Uyama, M. Nakashima, K. Morishige, Y. Mine, and Y. Murakami, Effects of Hydrogen Charge on Microscopic Fatigue Behavior of Annealed Carbon Steels, J. Fatigue Fract. Eng. Mater. Struct., 2006, 29, p 1066–1074CrossRef
4.
Zurück zum Zitat I.O. Shim and J.G. Bryne, Microstructural Structural Response of 4340 Steel to Hydrogen Charging, J. Eng. Mater., 1990, 12, p 235–244CrossRef I.O. Shim and J.G. Bryne, Microstructural Structural Response of 4340 Steel to Hydrogen Charging, J. Eng. Mater., 1990, 12, p 235–244CrossRef
6.
Zurück zum Zitat N.C. Uwakweh, C. Oswald, A. Samuel, and S. Vinod, Hydrogen Charging of AISI-321 Austenitic Stainless Steel by Cathodic Polarization, in Tri-Service Corrosion Conference, 2005, p 1–16 N.C. Uwakweh, C. Oswald, A. Samuel, and S. Vinod, Hydrogen Charging of AISI-321 Austenitic Stainless Steel by Cathodic Polarization, in Tri-Service Corrosion Conference, 2005, p 1–16
7.
Zurück zum Zitat J. Rehrl, K. Mraczek, A. Pichler, and E. Werner, Mechanical Properties and Fracture Behavior of Hydrogen Charges AHSS/UHSS Grades at High- and Low Strain Rate Tests, Mater. Sci. Eng. A, 2014, 590, p 360–367CrossRef J. Rehrl, K. Mraczek, A. Pichler, and E. Werner, Mechanical Properties and Fracture Behavior of Hydrogen Charges AHSS/UHSS Grades at High- and Low Strain Rate Tests, Mater. Sci. Eng. A, 2014, 590, p 360–367CrossRef
8.
Zurück zum Zitat J.P. Hirth, Effects of Hydrogen on the Properties of Iron and Steel, Metall. Trans. A, 1980, 11, p 861–890CrossRef J.P. Hirth, Effects of Hydrogen on the Properties of Iron and Steel, Metall. Trans. A, 1980, 11, p 861–890CrossRef
9.
Zurück zum Zitat H. Luo, C.F. Dong, Z.Y. Liu, M.T.J. Maha, and X.G. Li, Characterization of Hydrogen Charging of 2205 Duplex Stainless Steel and its Correlation with Hydrogen-Induced Cracking, Mater. Corros., 2013, 64, p 26–29CrossRef H. Luo, C.F. Dong, Z.Y. Liu, M.T.J. Maha, and X.G. Li, Characterization of Hydrogen Charging of 2205 Duplex Stainless Steel and its Correlation with Hydrogen-Induced Cracking, Mater. Corros., 2013, 64, p 26–29CrossRef
10.
Zurück zum Zitat A. Valiente, J. Toribio, R. Cortes, and L. Caballero, Tensile Failure of Stainless-Steel Notched Bars Under Hydrogen Charging, J. Eng. Mater. Technol., 1996, 118, p 118–191CrossRef A. Valiente, J. Toribio, R. Cortes, and L. Caballero, Tensile Failure of Stainless-Steel Notched Bars Under Hydrogen Charging, J. Eng. Mater. Technol., 1996, 118, p 118–191CrossRef
11.
Zurück zum Zitat R. Fratesi and G. Roventi, Hydrogen-Inclusion Interaction in Tempered Martensite Embrittled SAE 4340 Steels, Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process., 1989, 119, p 17–22CrossRef R. Fratesi and G. Roventi, Hydrogen-Inclusion Interaction in Tempered Martensite Embrittled SAE 4340 Steels, Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process., 1989, 119, p 17–22CrossRef
12.
Zurück zum Zitat R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 4th ed., J. Wiley & Sons, New York, 1996, p 485–514 R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 4th ed., J. Wiley & Sons, New York, 1996, p 485–514
13.
Zurück zum Zitat R.P. Gangloff, Hydrogen Assisted Cracking of High Strength Alloys, in Comprehensive Structural Integrity, vol. 6. Elsevier Science, New York, 2003, p 1–7 R.P. Gangloff, Hydrogen Assisted Cracking of High Strength Alloys, in Comprehensive Structural Integrity, vol. 6. Elsevier Science, New York, 2003, p 1–7
14.
Zurück zum Zitat T. Neeraj, R. Srinivasan, and J. Li, Hydrogen Embrittlement of Ferritic Steels: Observations on Deformation Microstructure, Nanoscale Dimples and Failure by Nanovoiding, Acta Mater., 2012, 60, p 5160–5171CrossRef T. Neeraj, R. Srinivasan, and J. Li, Hydrogen Embrittlement of Ferritic Steels: Observations on Deformation Microstructure, Nanoscale Dimples and Failure by Nanovoiding, Acta Mater., 2012, 60, p 5160–5171CrossRef
15.
Zurück zum Zitat J. Venenzuela, Q. Liu, M. Zhang, Q. Zhou, and A. Atrens, The Influence of Hydrogen on the Mechanical and Fracture Properties of Some Martensitic Advanced High Strength Steels Studied Using the Linearly Increasing Stress Test, Corros. Sci., 2015, 99, p 98–117CrossRef J. Venenzuela, Q. Liu, M. Zhang, Q. Zhou, and A. Atrens, The Influence of Hydrogen on the Mechanical and Fracture Properties of Some Martensitic Advanced High Strength Steels Studied Using the Linearly Increasing Stress Test, Corros. Sci., 2015, 99, p 98–117CrossRef
16.
Zurück zum Zitat S.-J. Lee, J. Aronevich, G. Krauss, and D. Matlock, Hydrogen Embrittlement of Hardened Low-Carbon Sheet Steel, ISIJ Int., 2010, 50(2), p 294–301CrossRef S.-J. Lee, J. Aronevich, G. Krauss, and D. Matlock, Hydrogen Embrittlement of Hardened Low-Carbon Sheet Steel, ISIJ Int., 2010, 50(2), p 294–301CrossRef
17.
Zurück zum Zitat D. Perez Escobar, K. Verbeken, L. Duprez, and M. Verhaege, Evaluation of Hydrogen Trapping in High Strength Steels by Thermal Desorption Spectroscopy, Mater. Sci. Eng. A, 2012, 551, p 50–58CrossRef D. Perez Escobar, K. Verbeken, L. Duprez, and M. Verhaege, Evaluation of Hydrogen Trapping in High Strength Steels by Thermal Desorption Spectroscopy, Mater. Sci. Eng. A, 2012, 551, p 50–58CrossRef
18.
Zurück zum Zitat F. Liu and Y. Zhao, Effects of Hydrogen Induced Delay Fracture on High-Strength Steel Plate of Automobile and Improvement, Frat. Integr. Strut., 2016, 36, p 139–150 F. Liu and Y. Zhao, Effects of Hydrogen Induced Delay Fracture on High-Strength Steel Plate of Automobile and Improvement, Frat. Integr. Strut., 2016, 36, p 139–150
19.
Zurück zum Zitat G. Wang, Y. Yan, J. Li, J. Huang, Y. Su, and L. Qiao, Hydrogen Embrittlement Assessment of Ultra-High Strength Steel 30CrMnSiNi2, Corros. Sci., 2013, 77, p 273–280CrossRef G. Wang, Y. Yan, J. Li, J. Huang, Y. Su, and L. Qiao, Hydrogen Embrittlement Assessment of Ultra-High Strength Steel 30CrMnSiNi2, Corros. Sci., 2013, 77, p 273–280CrossRef
20.
Zurück zum Zitat X.S. Du, W.B. Cao, C.D. Wang, S.J. Li, J.Y. Zhao, and Y.F. Sun, Effect of Microstructures and Inclusions on Hydrogen-Induced Cracking and Blistering of A537 Steel, Mater. Sci. Eng. A, 2015, 642, p 181–186CrossRef X.S. Du, W.B. Cao, C.D. Wang, S.J. Li, J.Y. Zhao, and Y.F. Sun, Effect of Microstructures and Inclusions on Hydrogen-Induced Cracking and Blistering of A537 Steel, Mater. Sci. Eng. A, 2015, 642, p 181–186CrossRef
21.
Zurück zum Zitat ASTM F326-96 (2012) Standard Test Method for Electronic Measurement for Hydrogen Embrittlement From Cadmium Electroplating Processes. ASTM F326-96 (2012) Standard Test Method for Electronic Measurement for Hydrogen Embrittlement From Cadmium Electroplating Processes. N.p., n.d. Web. 02 March 2014. ASTM F326-96 (2012) Standard Test Method for Electronic Measurement for Hydrogen Embrittlement From Cadmium Electroplating Processes. ASTM F326-96 (2012) Standard Test Method for Electronic Measurement for Hydrogen Embrittlement From Cadmium Electroplating Processes. N.p., n.d. Web. 02 March 2014.
22.
Zurück zum Zitat ASTM F1624-09 Standard Test Method for Measurement of Hydrogen Embrittlement Threshold in Steel by the Incremental Step Loading Technique.” N.p., n.d. Web. 02 Aug. 2014. ASTM F1624-09 Standard Test Method for Measurement of Hydrogen Embrittlement Threshold in Steel by the Incremental Step Loading Technique.” N.p., n.d. Web. 02 Aug. 2014.
23.
Zurück zum Zitat M. Szczepanski, The Brittleness of Steel, Wiley, New York, 1963, p 197–199 M. Szczepanski, The Brittleness of Steel, Wiley, New York, 1963, p 197–199
24.
Zurück zum Zitat M. Darbie Jean, A Model for Studying Hydrogen Embrittlement Using Severely Charged Impact Specimens, Master’s thesis, University of Washington, 1997 M. Darbie Jean, A Model for Studying Hydrogen Embrittlement Using Severely Charged Impact Specimens, Master’s thesis, University of Washington, 1997
25.
Zurück zum Zitat K. Mori, E.W. Lee, W.E. Frazier, K. Nigi, G. Battel, A. Tran, I. Iriarte, O. Perez, H. Ruitz, T. Choi, P. Stoyanov, J. Ogren, J. Alrashid, and O.S. Es-Said, Effect of Tempering and Baking on the Charpy Impact Energy of Hydrogen Charged 4340 Steel, NJMEPEG, 2015, 24, p 329–337CrossRef K. Mori, E.W. Lee, W.E. Frazier, K. Nigi, G. Battel, A. Tran, I. Iriarte, O. Perez, H. Ruitz, T. Choi, P. Stoyanov, J. Ogren, J. Alrashid, and O.S. Es-Said, Effect of Tempering and Baking on the Charpy Impact Energy of Hydrogen Charged 4340 Steel, NJMEPEG, 2015, 24, p 329–337CrossRef
26.
Zurück zum Zitat J.K. Tien, A.W. Thompson, I.M. Bernstein, and R.J. Richards, Hydrogen Transport by Dislocations, Met. Trans. A, 1976, 7A, p 821–829CrossRef J.K. Tien, A.W. Thompson, I.M. Bernstein, and R.J. Richards, Hydrogen Transport by Dislocations, Met. Trans. A, 1976, 7A, p 821–829CrossRef
27.
Zurück zum Zitat P. Bastien, and P. Azou, Effect of Hydrogen on the Deformation and Fracture of Iron and Steel in Simple Tension, in Proceedings of the First World Metallurgical Congress, ASM, Cleveland, OH, 1951, p 535–552 P. Bastien, and P. Azou, Effect of Hydrogen on the Deformation and Fracture of Iron and Steel in Simple Tension, in Proceedings of the First World Metallurgical Congress, ASM, Cleveland, OH, 1951, p 535–552
28.
Zurück zum Zitat G.M. Pressouyre and I.M. Bernstein, A Quantitative Analysis of Hydrogen Trapping, Met. Trans. A, 1987, 9A, p 1571–1580 G.M. Pressouyre and I.M. Bernstein, A Quantitative Analysis of Hydrogen Trapping, Met. Trans. A, 1987, 9A, p 1571–1580
31.
Zurück zum Zitat ASTM E23, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM Designation: E23, vol. 03.01. American Society for Testing and Materials, West Conshohocken, PA, 2012. ASTM E23, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM Designation: E23, vol. 03.01. American Society for Testing and Materials, West Conshohocken, PA, 2012.
32.
Zurück zum Zitat SAE AMS 2400, Aerospace Material Specification, Plating Cadmium, 2013-02. SAE AMS 2400, Aerospace Material Specification, Plating Cadmium, 2013-02.
33.
Zurück zum Zitat M.J. Haynes and R.P. Gangloff, Temperature Dependent Void Sheet Fracture in Al-Cu-Mg-Ag, Metall. Trans. A, 1998, 11A, p 1599–1613CrossRef M.J. Haynes and R.P. Gangloff, Temperature Dependent Void Sheet Fracture in Al-Cu-Mg-Ag, Metall. Trans. A, 1998, 11A, p 1599–1613CrossRef
34.
Zurück zum Zitat K.S. Ghosh and D.K. Mondal, Effects of Grain Size on Mechanical Electrochemical and Hydrogen Embrittlement Behavior of a Micro-Alloy-Steel, Mater. Sci. Eng. A, 2013, 559, p 693–705CrossRef K.S. Ghosh and D.K. Mondal, Effects of Grain Size on Mechanical Electrochemical and Hydrogen Embrittlement Behavior of a Micro-Alloy-Steel, Mater. Sci. Eng. A, 2013, 559, p 693–705CrossRef
35.
Zurück zum Zitat A.W. Thompson, Ductile Fracture Topography: Geometrical Contributions and Effects of Hydrogen, Metall. Trans. A, 1979, 10A, p 727–731CrossRef A.W. Thompson, Ductile Fracture Topography: Geometrical Contributions and Effects of Hydrogen, Metall. Trans. A, 1979, 10A, p 727–731CrossRef
36.
Zurück zum Zitat J.K. Tien, K. Nair, and R.R. Jensen, Dislocation Sweeping of Hydrogen and Hydrogen Embrittlement, Hydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, Ed., Metallurgical Society of AIME, New York, NY, 1981, p 37–56 J.K. Tien, K. Nair, and R.R. Jensen, Dislocation Sweeping of Hydrogen and Hydrogen Embrittlement, Hydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, Ed., Metallurgical Society of AIME, New York, NY, 1981, p 37–56
37.
Zurück zum Zitat S.M. Charca, O.N. Uwakweh, and U. Agarwala, Hydrogen Transport Conditions and Effects in Cathodically Polarized AF 1410 Steel, Metall. Mater. Trans. A, 2007, 38A, p 2389–2399CrossRef S.M. Charca, O.N. Uwakweh, and U. Agarwala, Hydrogen Transport Conditions and Effects in Cathodically Polarized AF 1410 Steel, Metall. Mater. Trans. A, 2007, 38A, p 2389–2399CrossRef
38.
Zurück zum Zitat J. Albrecht, I.M. Bernstein, and A.W. Thompson, Evidence for Dislocation Transport of Hydrogen in Aluminum, Metall. Trans. A, 1982, 13A, p 811–820CrossRef J. Albrecht, I.M. Bernstein, and A.W. Thompson, Evidence for Dislocation Transport of Hydrogen in Aluminum, Metall. Trans. A, 1982, 13A, p 811–820CrossRef
39.
Zurück zum Zitat A.W. Thompson and B.A. Wilcox, Deformation and Fracture of Dispersion Strengthened Nickel Charged with Hydrogen, Scr. Met., 1972, 6, p 689–696CrossRef A.W. Thompson and B.A. Wilcox, Deformation and Fracture of Dispersion Strengthened Nickel Charged with Hydrogen, Scr. Met., 1972, 6, p 689–696CrossRef
40.
Zurück zum Zitat C.G. Rhodes and A.W. Thompson, Microstructure and Hydrogen Performance of Alloy 903, Metal. Trans. A., 1977, 8A, p 949–954CrossRef C.G. Rhodes and A.W. Thompson, Microstructure and Hydrogen Performance of Alloy 903, Metal. Trans. A., 1977, 8A, p 949–954CrossRef
41.
Zurück zum Zitat N.F. Foire and J.A. Kargol, Hydrogen-Related Embrittlement of Ni-Base Superalloy, Hydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, Ed., TMS-AIME, Warrendale, PA, 1981, p 851–862 N.F. Foire and J.A. Kargol, Hydrogen-Related Embrittlement of Ni-Base Superalloy, Hydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, Ed., TMS-AIME, Warrendale, PA, 1981, p 851–862
42.
Zurück zum Zitat I.M. Robertson, The Effect of Hydrogen on Dislocation Dynamics, Eng. Fract. Mech., 2001, 68, p 671–692CrossRef I.M. Robertson, The Effect of Hydrogen on Dislocation Dynamics, Eng. Fract. Mech., 2001, 68, p 671–692CrossRef
43.
Zurück zum Zitat S.P. Lynch, Environmentally Assisted Cracking: Overview of Evidence for an Adsorption-Induced Localized-Slip Process, Acta Mater., 1988, 36, p 2639–2661CrossRef S.P. Lynch, Environmentally Assisted Cracking: Overview of Evidence for an Adsorption-Induced Localized-Slip Process, Acta Mater., 1988, 36, p 2639–2661CrossRef
44.
Zurück zum Zitat H.K. Birnbaum and P. Sorfronis, Hydrogen-Enhanced Localized Plasticity—A Mechanism for Hydrogen-Related Fracture, Mater. Sci. Eng. A, 1988, 36, p 2639–2661 H.K. Birnbaum and P. Sorfronis, Hydrogen-Enhanced Localized Plasticity—A Mechanism for Hydrogen-Related Fracture, Mater. Sci. Eng. A, 1988, 36, p 2639–2661
45.
Zurück zum Zitat M.L. Martin, J.A. Fenske, G.S. Liu, P. Sofronis, and I.M. Robertson, On the Formation and Nature of Quasi-Cleavage Fracture Surfaces in Hydrogen Embrittled Steels, Acta Mater., 2011, 59, p 1601–1606CrossRef M.L. Martin, J.A. Fenske, G.S. Liu, P. Sofronis, and I.M. Robertson, On the Formation and Nature of Quasi-Cleavage Fracture Surfaces in Hydrogen Embrittled Steels, Acta Mater., 2011, 59, p 1601–1606CrossRef
Metadaten
Titel
Effect of Cadmium Plating Thickness on the Charpy Impact Energy of Hydrogen-Charged 4340 Steel
verfasst von
O. S. Es-Said
J. Alcisto
J. Guerra
E. Jones
A. Dominguez
M. Hahn
N. Ula
L. Zeng
B. Ramsey
H. Mulazimoglu
Yong-Jun Li
M. Miller
J. Alrashid
M. Papakyriakou
S. Kalnaus
E. W. Lee
W. E. Frazier
Publikationsdatum
22.07.2016
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2016
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2246-6

Weitere Artikel der Ausgabe 9/2016

Journal of Materials Engineering and Performance 9/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.