Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2019

24.06.2019

Effect of Carbon Nanotube Concentration on the Corrosion Behavior of Electroless Ni-B-CNT Coating

verfasst von: S. Yazdani, F. Mahboubi, R. Tima, O. Sharifahmadian

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, Ni-B-CNT composite was deposited on AISI 4140 steel using different concentrations of CNTs ranging from 0.2 to 1 gr/lit in an electroless bath. The phase analysis and surface morphology of the samples were characterized using x-ray diffraction and FESEM. The corrosion behavior of the coated samples was investigated in a 3.5 wt.% NaCl solution through potentiodynamic polarization, EIS, and electrochemical noise (EN) analyses. The corroded surface of the samples was further analyzed via FESEM observation after 10 days of immersion in corrosive medium. It was found that although adding 0.2 gr/lit CNT in electroless solution improves corrosion resistance, increasing CNT concentration from 0.2 up to 1 gr/lit increases the corrosion rate. The FESEM observations and EN results imply that the formation of micro-galvanic cells in samples with high concentration of CNTs leads to nucleation and growth of the pits. The results revealed that no passive layer was formed on the surface of the Ni-B sample, and the corrosion occurred through ionic diffusion into the cracks and crevices. The results of potentiodynamic test show that adding CNTs into electroless bath facilitates the formation of passive layer. However, results of EN test imply that increasing CNT concentration causes repetitive breakdown and recovery of passive film.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E. Georgiza, V. Gouda, and P. Vassiliou, Production and Properties of Composite Electroless Ni-B-SiC Coatings, Surf. Coat. Technol., 2017, 325, p 46–51CrossRef E. Georgiza, V. Gouda, and P. Vassiliou, Production and Properties of Composite Electroless Ni-B-SiC Coatings, Surf. Coat. Technol., 2017, 325, p 46–51CrossRef
2.
Zurück zum Zitat A. Mukhopadhyay, T.K. Barman, and P. Sahoo, Tribological Behavior of Sodium Borohydride Reduced Electroless Nickel Alloy Coatings at Room and Elevated Temperatures, Surf. Coat. Technol., 2017, 321, p 464–476CrossRef A. Mukhopadhyay, T.K. Barman, and P. Sahoo, Tribological Behavior of Sodium Borohydride Reduced Electroless Nickel Alloy Coatings at Room and Elevated Temperatures, Surf. Coat. Technol., 2017, 321, p 464–476CrossRef
3.
Zurück zum Zitat S. Shibli and K. Chinchu, Development and Electrochemical Characterization of Ni-P Coated Tungsten Incorporated Electroless Nickel Coatings, Mater. Chem. Phys., 2016, 178, p 21–30CrossRef S. Shibli and K. Chinchu, Development and Electrochemical Characterization of Ni-P Coated Tungsten Incorporated Electroless Nickel Coatings, Mater. Chem. Phys., 2016, 178, p 21–30CrossRef
4.
Zurück zum Zitat V. Vitry and L. Bonin, Formation and Characterization of Multilayers Borohydride and Hypophosphite Reduced Electroless Nickel Deposits, Electrochim. Acta, 2017, 243, p 7–17CrossRef V. Vitry and L. Bonin, Formation and Characterization of Multilayers Borohydride and Hypophosphite Reduced Electroless Nickel Deposits, Electrochim. Acta, 2017, 243, p 7–17CrossRef
5.
Zurück zum Zitat V. Vitry and L. Bonin, Increase of Boron Content in Electroless Nickel-Boron Coating by Modification of Plating Conditions, Surf. Coat. Technol., 2017, 311, p 164–171CrossRef V. Vitry and L. Bonin, Increase of Boron Content in Electroless Nickel-Boron Coating by Modification of Plating Conditions, Surf. Coat. Technol., 2017, 311, p 164–171CrossRef
6.
Zurück zum Zitat L. Bonin, V. Vitry, and F. Delaunois, The Tin Stabilization Effect on the Microstructure, Corrosion and Wear Resistance of Electroless NiB Coatings, Surf. Coat. Technol., 2019, 357, p 353–363CrossRef L. Bonin, V. Vitry, and F. Delaunois, The Tin Stabilization Effect on the Microstructure, Corrosion and Wear Resistance of Electroless NiB Coatings, Surf. Coat. Technol., 2019, 357, p 353–363CrossRef
7.
Zurück zum Zitat L. Bonin, V. Vitry, and F. Delaunois, Corrosion Behaviour of Electroless High Boron-Mid Phosphorous Nickel Duplex Coatings in the as-Plated and Heat-Treated States in NaCl, H 2 SO 4, NaOH and Na 2 SO 4 Media, Mater. Chem. Phys., 2018, 208, p 77–84CrossRef L. Bonin, V. Vitry, and F. Delaunois, Corrosion Behaviour of Electroless High Boron-Mid Phosphorous Nickel Duplex Coatings in the as-Plated and Heat-Treated States in NaCl, H 2 SO 4, NaOH and Na 2 SO 4 Media, Mater. Chem. Phys., 2018, 208, p 77–84CrossRef
8.
Zurück zum Zitat Z.A. Hamid, H. Hassan, and A. Attyia, Influence of Deposition Temperature and Heat Treatment on the Performance of Electroless Ni-B Films, Surf. Coat. Technol., 2010, 205, p 2348–2354CrossRef Z.A. Hamid, H. Hassan, and A. Attyia, Influence of Deposition Temperature and Heat Treatment on the Performance of Electroless Ni-B Films, Surf. Coat. Technol., 2010, 205, p 2348–2354CrossRef
9.
Zurück zum Zitat K. Krishnaveni, T.S. Narayanan, and S. Seshadri, Corrosion Resistance of Electrodeposited Ni-B and Ni-B-Si3N4 Composite Coatings, J. Alloy Compd., 2009, 480, p 765–770CrossRef K. Krishnaveni, T.S. Narayanan, and S. Seshadri, Corrosion Resistance of Electrodeposited Ni-B and Ni-B-Si3N4 Composite Coatings, J. Alloy Compd., 2009, 480, p 765–770CrossRef
10.
Zurück zum Zitat M. Anik, E. Körpe, and E. Şen, Effect of Coating Bath Composition on the Properties of Electroless Nickel–Boron Films, Surf. Coat. Technol., 2008, 202, p 1718–1727CrossRef M. Anik, E. Körpe, and E. Şen, Effect of Coating Bath Composition on the Properties of Electroless Nickel–Boron Films, Surf. Coat. Technol., 2008, 202, p 1718–1727CrossRef
11.
Zurück zum Zitat V. Vitry, A.-F. Kanta, and F. Delaunois, Application of Nitriding to Electroless Nickel–Boron Coatings: Chemical and Structural Effects; Mechanical Characterization; Corrosion Resistance, Mater. Des., 2012, 39, p 269–278CrossRef V. Vitry, A.-F. Kanta, and F. Delaunois, Application of Nitriding to Electroless Nickel–Boron Coatings: Chemical and Structural Effects; Mechanical Characterization; Corrosion Resistance, Mater. Des., 2012, 39, p 269–278CrossRef
12.
Zurück zum Zitat S.R. Ardakani, A. Afshar, S. Sadreddini, and A. Ghanbari, Characterization of Ni-P-SiO2-Al2O3 Nano-Composite Coatings on Aluminum Substrate, Mater. Chem. Phys., 2017, 189, p 207–214CrossRef S.R. Ardakani, A. Afshar, S. Sadreddini, and A. Ghanbari, Characterization of Ni-P-SiO2-Al2O3 Nano-Composite Coatings on Aluminum Substrate, Mater. Chem. Phys., 2017, 189, p 207–214CrossRef
13.
Zurück zum Zitat K.A. Kumar, G.P. Kalaignan, and V. Muralidharan, Direct and Pulse Current Electrodeposition of Ni-W-TiO2 Nanocomposite Coatings, Ceram. Int., 2013, 39, p 2827–2834CrossRef K.A. Kumar, G.P. Kalaignan, and V. Muralidharan, Direct and Pulse Current Electrodeposition of Ni-W-TiO2 Nanocomposite Coatings, Ceram. Int., 2013, 39, p 2827–2834CrossRef
14.
Zurück zum Zitat C. Sun, X. Liu, C. Zhou, C. Wang, and H. Cao, Preparation and Wear Properties of Magnetic Assisted Pulse Electrodeposited Ni-SiC Nanocoatings, Ceram. Int., 2019, 45, p 1348–1355CrossRef C. Sun, X. Liu, C. Zhou, C. Wang, and H. Cao, Preparation and Wear Properties of Magnetic Assisted Pulse Electrodeposited Ni-SiC Nanocoatings, Ceram. Int., 2019, 45, p 1348–1355CrossRef
15.
Zurück zum Zitat T. He, Y. He, H. Li, Z. Su, Y. Fan, and Z. He, Fabrication of Ni-W-B4C Composite Coatings and Evaluation of its Micro-Hardness and Corrosion Resistance Properties, Ceram. Int., 2018, 44, p 9188–9193CrossRef T. He, Y. He, H. Li, Z. Su, Y. Fan, and Z. He, Fabrication of Ni-W-B4C Composite Coatings and Evaluation of its Micro-Hardness and Corrosion Resistance Properties, Ceram. Int., 2018, 44, p 9188–9193CrossRef
16.
Zurück zum Zitat Y. Wang, Q. Zhou, K. Li, Q. Zhong, and Q.B. Bui, Preparation of Ni-W-SiO2 Nanocomposite Coating and Evaluation of its Hardness and Corrosion Resistance, Ceram. Int., 2015, 41, p 79–84CrossRef Y. Wang, Q. Zhou, K. Li, Q. Zhong, and Q.B. Bui, Preparation of Ni-W-SiO2 Nanocomposite Coating and Evaluation of its Hardness and Corrosion Resistance, Ceram. Int., 2015, 41, p 79–84CrossRef
17.
Zurück zum Zitat J. Tian, X. Liu, J. Wang, X. Wang, and Y. Yin, Electrochemical Anticorrosion Behaviors of the Electroless Deposited Ni-P and Ni-P-PTFE Coatings in Sterilized and Unsterilized Seawater, Mater. Chem. Phys., 2010, 124, p 751–759CrossRef J. Tian, X. Liu, J. Wang, X. Wang, and Y. Yin, Electrochemical Anticorrosion Behaviors of the Electroless Deposited Ni-P and Ni-P-PTFE Coatings in Sterilized and Unsterilized Seawater, Mater. Chem. Phys., 2010, 124, p 751–759CrossRef
18.
Zurück zum Zitat B. Li and W. Zhang, Microstructural, Surface and Electrochemical Properties of Pulse Electrodeposited Ni-W/Si3N4 Nanocomposite Coating, Ceram. Int., 2018, 44, p 19907–19918CrossRef B. Li and W. Zhang, Microstructural, Surface and Electrochemical Properties of Pulse Electrodeposited Ni-W/Si3N4 Nanocomposite Coating, Ceram. Int., 2018, 44, p 19907–19918CrossRef
19.
Zurück zum Zitat M. Rashad, F. Pan, A. Tang, M. Asif, and M. Aamir, Synergetic Effect of Graphene Nanoplatelets (GNPs) and Multi-Walled Carbon Nanotube (MW-CNTs) on Mechanical Properties of Pure Magnesium, J. Alloy. Compd., 2014, 603, p 111–118CrossRef M. Rashad, F. Pan, A. Tang, M. Asif, and M. Aamir, Synergetic Effect of Graphene Nanoplatelets (GNPs) and Multi-Walled Carbon Nanotube (MW-CNTs) on Mechanical Properties of Pure Magnesium, J. Alloy. Compd., 2014, 603, p 111–118CrossRef
20.
Zurück zum Zitat Y. Zhu, L. Li, C. Zhang, G. Casillas, Z. Sun, Z. Yan, G. Ruan, Z. Peng, A.-R.O. Raji, and C. Kittrell, A Seamless Three-Dimensional Carbon Nanotube Graphene Hybrid Material, Nat. Commun., 2012, 3, p 1225CrossRef Y. Zhu, L. Li, C. Zhang, G. Casillas, Z. Sun, Z. Yan, G. Ruan, Z. Peng, A.-R.O. Raji, and C. Kittrell, A Seamless Three-Dimensional Carbon Nanotube Graphene Hybrid Material, Nat. Commun., 2012, 3, p 1225CrossRef
21.
Zurück zum Zitat S. Yazdani, R. Tima, and F. Mahboubi, Investigation of Wear Behavior of as-Plated and Plasma-Nitrided Ni-B-CNT Electroless Having Different CNTs Concentration, Appl. Surf. Sci., 2018, 457, p 942–955CrossRef S. Yazdani, R. Tima, and F. Mahboubi, Investigation of Wear Behavior of as-Plated and Plasma-Nitrided Ni-B-CNT Electroless Having Different CNTs Concentration, Appl. Surf. Sci., 2018, 457, p 942–955CrossRef
22.
Zurück zum Zitat M. Zhou, Y. Mai, H. Ling, F. Chen, W. Lian, and X. Jie, Electrodeposition of CNTs/Copper Composite Coatings with Enhanced Tribological Performance from a Low Concentration CNTs Colloidal Solution, Mater. Res. Bull., 2018, 97, p 537–543CrossRef M. Zhou, Y. Mai, H. Ling, F. Chen, W. Lian, and X. Jie, Electrodeposition of CNTs/Copper Composite Coatings with Enhanced Tribological Performance from a Low Concentration CNTs Colloidal Solution, Mater. Res. Bull., 2018, 97, p 537–543CrossRef
23.
Zurück zum Zitat A.J. Albaaji, E.G. Castle, M.J. Reece, J.P. Hall, and S.L. Evans, Effect of Ball-Milling Time on Mechanical and Magnetic Properties of Carbon Nanotube Reinforced FeCo Alloy Composites, Mater. Des., 2017, 122, p 296–306CrossRef A.J. Albaaji, E.G. Castle, M.J. Reece, J.P. Hall, and S.L. Evans, Effect of Ball-Milling Time on Mechanical and Magnetic Properties of Carbon Nanotube Reinforced FeCo Alloy Composites, Mater. Des., 2017, 122, p 296–306CrossRef
24.
Zurück zum Zitat Y.-C. Chiang, W.-H. Lin, and Y.-C. Chang, The Influence of Treatment Duration on Multi-Walled Carbon Nanotubes Functionalized by H2SO4/HNO3 Oxidation, Appl. Surf. Sci., 2011, 257, p 2401–2410CrossRef Y.-C. Chiang, W.-H. Lin, and Y.-C. Chang, The Influence of Treatment Duration on Multi-Walled Carbon Nanotubes Functionalized by H2SO4/HNO3 Oxidation, Appl. Surf. Sci., 2011, 257, p 2401–2410CrossRef
25.
Zurück zum Zitat J.-H. Ahn, H.-S. Shin, Y.-J. Kim, and H. Chung, Structural Modification of Carbon Nanotubes by Various Ball Milling, J. Alloy Compd., 2007, 434, p 428–432CrossRef J.-H. Ahn, H.-S. Shin, Y.-J. Kim, and H. Chung, Structural Modification of Carbon Nanotubes by Various Ball Milling, J. Alloy Compd., 2007, 434, p 428–432CrossRef
26.
Zurück zum Zitat K.A. Wepasnick, B.A. Smith, K.E. Schrote, H.K. Wilson, S.R. Diegelmann, and D.H. Fairbrother, Surface and Structural Characterization of Multi-Walled Carbon Nanotubes Following Different Oxidative Treatments, Carbon, 2011, 49, p 24–36CrossRef K.A. Wepasnick, B.A. Smith, K.E. Schrote, H.K. Wilson, S.R. Diegelmann, and D.H. Fairbrother, Surface and Structural Characterization of Multi-Walled Carbon Nanotubes Following Different Oxidative Treatments, Carbon, 2011, 49, p 24–36CrossRef
27.
Zurück zum Zitat L. Vaisman, H.D. Wagner, and G. Marom, The Role of Surfactants in Dispersion of Carbon Nanotubes, Adv. Coll. Interface. Sci., 2006, 128, p 37–46CrossRef L. Vaisman, H.D. Wagner, and G. Marom, The Role of Surfactants in Dispersion of Carbon Nanotubes, Adv. Coll. Interface. Sci., 2006, 128, p 37–46CrossRef
28.
Zurück zum Zitat H.O. Pierson, Handbook of carbon, graphite, diamonds and fullerenes: processing, properties and applications, William Andrew, Norwich, 2012 H.O. Pierson, Handbook of carbon, graphite, diamonds and fullerenes: processing, properties and applications, William Andrew, Norwich, 2012
29.
Zurück zum Zitat Y. Shao, G. Yin, J. Zhang, and Y. Gao, Comparative Investigation of the Resistance to Electrochemical Oxidation of Carbon Black and Carbon Nanotubes in Aqueous Sulfuric Acid Solution, Electrochim. Acta, 2006, 51, p 5853–5857CrossRef Y. Shao, G. Yin, J. Zhang, and Y. Gao, Comparative Investigation of the Resistance to Electrochemical Oxidation of Carbon Black and Carbon Nanotubes in Aqueous Sulfuric Acid Solution, Electrochim. Acta, 2006, 51, p 5853–5857CrossRef
30.
Zurück zum Zitat M. Alishahi, S.M. Monirvaghefi, A. Saatchi, and S.M. Hosseini, The Effect of Carbon Nanotubes on the Corrosion and Tribological Behavior of Electroless Ni-P-CNT Composite Coating, Appl. Surf. Sci., 2012, 258, p 2439–2446CrossRef M. Alishahi, S.M. Monirvaghefi, A. Saatchi, and S.M. Hosseini, The Effect of Carbon Nanotubes on the Corrosion and Tribological Behavior of Electroless Ni-P-CNT Composite Coating, Appl. Surf. Sci., 2012, 258, p 2439–2446CrossRef
31.
Zurück zum Zitat X. Chen, C. Chen, H. Xiao, F. Cheng, G. Zhang, and G. Yi, Corrosion Behavior of Carbon Nanotubes–Ni Composite Coating, Surf. Coat. Technol., 2005, 191, p 351–356CrossRef X. Chen, C. Chen, H. Xiao, F. Cheng, G. Zhang, and G. Yi, Corrosion Behavior of Carbon Nanotubes–Ni Composite Coating, Surf. Coat. Technol., 2005, 191, p 351–356CrossRef
32.
Zurück zum Zitat B. Praveen and T. Venkatesha, Electrodeposition and Properties of Zn-Ni-CNT Composite Coatings, J. Alloy. Compd., 2009, 482, p 53–57CrossRef B. Praveen and T. Venkatesha, Electrodeposition and Properties of Zn-Ni-CNT Composite Coatings, J. Alloy. Compd., 2009, 482, p 53–57CrossRef
33.
Zurück zum Zitat Z. Yang, H. Xu, Y.-L. Shi, M.-K. Li, Y. Huang, and H.-L. Li, The Fabrication and Corrosion Behavior of Electroless Ni-P-Carbon Nanotube Composite Coatings, Mater. Res. Bull., 2005, 40, p 1001–1009CrossRef Z. Yang, H. Xu, Y.-L. Shi, M.-K. Li, Y. Huang, and H.-L. Li, The Fabrication and Corrosion Behavior of Electroless Ni-P-Carbon Nanotube Composite Coatings, Mater. Res. Bull., 2005, 40, p 1001–1009CrossRef
34.
Zurück zum Zitat A. Zarebidaki and S.-R. Allahkaram, Effect of Surfactant on the Fabrication and Characterization of Ni-P-CNT Composite Coatings, J. Alloy. Compd., 2011, 509, p 1836–1840CrossRef A. Zarebidaki and S.-R. Allahkaram, Effect of Surfactant on the Fabrication and Characterization of Ni-P-CNT Composite Coatings, J. Alloy. Compd., 2011, 509, p 1836–1840CrossRef
35.
Zurück zum Zitat J. Thakare, R. Mulik, and M. Mahapatra, Effect of Carbon Nanotubes and Aluminum Oxide on the Properties of a Plasma Sprayed Thermal Barrier Coating, Ceram. Int., 2018, 44, p 438–451CrossRef J. Thakare, R. Mulik, and M. Mahapatra, Effect of Carbon Nanotubes and Aluminum Oxide on the Properties of a Plasma Sprayed Thermal Barrier Coating, Ceram. Int., 2018, 44, p 438–451CrossRef
36.
Zurück zum Zitat J. Thakare, R. Mulik, and M. Mahapatra, Hot Corrosion Behavior of Plasma Sprayed 8YSZ-Alumina-CNT Composite Coating in Na2SO4-60% V2O5 Molten Salt Environment, Ceram. Int., 2018, 44, p 21533–21545CrossRef J. Thakare, R. Mulik, and M. Mahapatra, Hot Corrosion Behavior of Plasma Sprayed 8YSZ-Alumina-CNT Composite Coating in Na2SO4-60% V2O5 Molten Salt Environment, Ceram. Int., 2018, 44, p 21533–21545CrossRef
37.
Zurück zum Zitat H. Fukuda, J.A. Szpunar, K. Kondoh, and R. Chromik, The Influence of Carbon Nanotubes on the Corrosion Behaviour of AZ31B Magnesium Alloy, Corros. Sci., 2010, 52, p 3917–3923CrossRef H. Fukuda, J.A. Szpunar, K. Kondoh, and R. Chromik, The Influence of Carbon Nanotubes on the Corrosion Behaviour of AZ31B Magnesium Alloy, Corros. Sci., 2010, 52, p 3917–3923CrossRef
38.
Zurück zum Zitat M.C. Turhan, Q. Li, H. Jha, R.F. Singer, and S. Virtanen, Corrosion Behaviour of Multiwall Carbon Nanotube/Magnesium Composites in 3.5% NaCl, Electrochim. Acta, 2011, 56, p 7141–7148CrossRef M.C. Turhan, Q. Li, H. Jha, R.F. Singer, and S. Virtanen, Corrosion Behaviour of Multiwall Carbon Nanotube/Magnesium Composites in 3.5% NaCl, Electrochim. Acta, 2011, 56, p 7141–7148CrossRef
39.
Zurück zum Zitat N.N. Aung, W. Zhou, C.S. Goh, S.M.L. Nai, and J. Wei, Effect of Carbon Nanotubes on Corrosion of Mg-CNT Composites, Corros. Sci., 2010, 52, p 1551–1553CrossRef N.N. Aung, W. Zhou, C.S. Goh, S.M.L. Nai, and J. Wei, Effect of Carbon Nanotubes on Corrosion of Mg-CNT Composites, Corros. Sci., 2010, 52, p 1551–1553CrossRef
40.
Zurück zum Zitat Q.-L. Rao, G. Bi, Q.-H. Lu, H.-W. Wang, and X.-L. Fan, Microstructure Evolution of Electroless Ni-B Film During its Depositing Process, Appl. Surf. Sci., 2005, 240, p 28–33CrossRef Q.-L. Rao, G. Bi, Q.-H. Lu, H.-W. Wang, and X.-L. Fan, Microstructure Evolution of Electroless Ni-B Film During its Depositing Process, Appl. Surf. Sci., 2005, 240, p 28–33CrossRef
41.
Zurück zum Zitat K. Lee, D. Chang, and S. Kwon, Properties of Electrodeposited Nanocrystalline Ni-B Alloy Films, Electrochim. Acta, 2005, 50, p 4538–4543CrossRef K. Lee, D. Chang, and S. Kwon, Properties of Electrodeposited Nanocrystalline Ni-B Alloy Films, Electrochim. Acta, 2005, 50, p 4538–4543CrossRef
42.
Zurück zum Zitat L. Gou, P.-G. Liu, D. Liu, C.-Y. Wang, H.-Y. Lei, Z.-Y. Li, X.-Y. Fan, and D.-L. Li, Rational Synthesis of Ni 3 (HCOO) 6/CNT Ellipsoids with Enhanced Lithium Storage Performance: Inspired by the Time Evolution of the Growth Process of a Nickel Formate Framework, Dalton Trans., 2017, 46, p 6473–6482CrossRef L. Gou, P.-G. Liu, D. Liu, C.-Y. Wang, H.-Y. Lei, Z.-Y. Li, X.-Y. Fan, and D.-L. Li, Rational Synthesis of Ni 3 (HCOO) 6/CNT Ellipsoids with Enhanced Lithium Storage Performance: Inspired by the Time Evolution of the Growth Process of a Nickel Formate Framework, Dalton Trans., 2017, 46, p 6473–6482CrossRef
43.
Zurück zum Zitat B. Praveen, T. Venkatesha, Y.A. Naik, and K. Prashantha, Corrosion Studies of Carbon Nanotubes–Zn Composite Coating, Surf. Coat. Technol., 2007, 201, p 5836–5842CrossRef B. Praveen, T. Venkatesha, Y.A. Naik, and K. Prashantha, Corrosion Studies of Carbon Nanotubes–Zn Composite Coating, Surf. Coat. Technol., 2007, 201, p 5836–5842CrossRef
44.
Zurück zum Zitat Y.N. Bekish, S. Poznyak, L. Tsybulskaya, and T. Gaevskaya, Electrodeposited Ni-B Alloy Coatings: Structure, Corrosion Resistance and Mechanical Properties, Electrochim. Acta, 2010, 55, p 2223–2231CrossRef Y.N. Bekish, S. Poznyak, L. Tsybulskaya, and T. Gaevskaya, Electrodeposited Ni-B Alloy Coatings: Structure, Corrosion Resistance and Mechanical Properties, Electrochim. Acta, 2010, 55, p 2223–2231CrossRef
45.
Zurück zum Zitat W. Wei, Y. Tao, W. Lv, F.-Y. Su, L. Ke, J. Li, D.-W. Wang, B. Li, F. Kang, and Q.-H. Yang, Unusual High Oxygen Reduction Performance in All-Carbon Electrocatalysts, Sci. Rep., 2014, 4, p 6289CrossRef W. Wei, Y. Tao, W. Lv, F.-Y. Su, L. Ke, J. Li, D.-W. Wang, B. Li, F. Kang, and Q.-H. Yang, Unusual High Oxygen Reduction Performance in All-Carbon Electrocatalysts, Sci. Rep., 2014, 4, p 6289CrossRef
46.
Zurück zum Zitat F. Growcock and R. Jasinski, Time-Resolved Impedance Spectroscopy of Mild Steel in Concentrated Hydrochloric Acid, J. Electrochem. Soc., 1989, 136, p 2310–2314CrossRef F. Growcock and R. Jasinski, Time-Resolved Impedance Spectroscopy of Mild Steel in Concentrated Hydrochloric Acid, J. Electrochem. Soc., 1989, 136, p 2310–2314CrossRef
47.
Zurück zum Zitat H. Ashassi-Sorkhabi and M. Es, Corrosion Resistance Enhancement of Electroless Ni-P Coating by Incorporation of Ultrasonically Dispersed Diamond Nanoparticles, Corros. Sci., 2013, 77, p 185–193CrossRef H. Ashassi-Sorkhabi and M. Es, Corrosion Resistance Enhancement of Electroless Ni-P Coating by Incorporation of Ultrasonically Dispersed Diamond Nanoparticles, Corros. Sci., 2013, 77, p 185–193CrossRef
48.
Zurück zum Zitat H.S. Klapper, J. Goellner, and A. Heyn, The Influence of the Cathodic Process on the Interpretation of Electrochemical Noise Signals Arising from Pitting Corrosion of Stainless Steels, Corros. Sci., 2010, 52, p 1362–1372CrossRef H.S. Klapper, J. Goellner, and A. Heyn, The Influence of the Cathodic Process on the Interpretation of Electrochemical Noise Signals Arising from Pitting Corrosion of Stainless Steels, Corros. Sci., 2010, 52, p 1362–1372CrossRef
49.
Zurück zum Zitat S. Girija, U.K. Mudali, V. Raju, R. Dayal, H. Khatak, and B. Raj, Determination of Corrosion Types for AISI, type 304L Stainless Steel Using Electrochemical Noise Method, Mater. Sci. Eng. A, 2005, 407, p 188–195CrossRef S. Girija, U.K. Mudali, V. Raju, R. Dayal, H. Khatak, and B. Raj, Determination of Corrosion Types for AISI, type 304L Stainless Steel Using Electrochemical Noise Method, Mater. Sci. Eng. A, 2005, 407, p 188–195CrossRef
50.
Zurück zum Zitat B. Markhali, R. Naderi, M. Mahdavian, M. Sayebani, and S. Arman, Electrochemical Impedance Spectroscopy and Electrochemical Noise Measurements as Tools to Evaluate Corrosion Inhibition of Azole Compounds on Stainless Steel in Acidic Media, Corros. Sci., 2013, 75, p 269–279CrossRef B. Markhali, R. Naderi, M. Mahdavian, M. Sayebani, and S. Arman, Electrochemical Impedance Spectroscopy and Electrochemical Noise Measurements as Tools to Evaluate Corrosion Inhibition of Azole Compounds on Stainless Steel in Acidic Media, Corros. Sci., 2013, 75, p 269–279CrossRef
51.
Zurück zum Zitat C.-J. Park and H.-S. Kwon, Electrochemical Noise Analysis of Localized Corrosion of Duplex Stainless Steel Aged at 475 °C, Mater. Chem. Phys., 2005, 91, p 355–360CrossRef C.-J. Park and H.-S. Kwon, Electrochemical Noise Analysis of Localized Corrosion of Duplex Stainless Steel Aged at 475 °C, Mater. Chem. Phys., 2005, 91, p 355–360CrossRef
52.
Zurück zum Zitat A. Chen, F. Cao, X. Liao, W. Liu, L. Zheng, J. Zhang, and C. Cao, Study of Pitting Corrosion on Mild Steel During Wet–Dry Cycles by Electrochemical Noise Analysis Based on Chaos Theory, Corros. Sci., 2013, 66, p 183–195CrossRef A. Chen, F. Cao, X. Liao, W. Liu, L. Zheng, J. Zhang, and C. Cao, Study of Pitting Corrosion on Mild Steel During Wet–Dry Cycles by Electrochemical Noise Analysis Based on Chaos Theory, Corros. Sci., 2013, 66, p 183–195CrossRef
53.
Zurück zum Zitat Z. Rajabalizadeh, D. Seifzadeh, A. Habibi-Yangjeh, T.M. Gundoshmian, and S. Nezamdoust, Electrochemical Noise Analysis to Examine the Corrosion Behavior of Ni-P Deposit on AM60B Alloy Plated by Zr Pretreatment, Surf. Coat. Technol., 2018, 346, p 29–39CrossRef Z. Rajabalizadeh, D. Seifzadeh, A. Habibi-Yangjeh, T.M. Gundoshmian, and S. Nezamdoust, Electrochemical Noise Analysis to Examine the Corrosion Behavior of Ni-P Deposit on AM60B Alloy Plated by Zr Pretreatment, Surf. Coat. Technol., 2018, 346, p 29–39CrossRef
Metadaten
Titel
Effect of Carbon Nanotube Concentration on the Corrosion Behavior of Electroless Ni-B-CNT Coating
verfasst von
S. Yazdani
F. Mahboubi
R. Tima
O. Sharifahmadian
Publikationsdatum
24.06.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04155-3

Weitere Artikel der Ausgabe 6/2019

Journal of Materials Engineering and Performance 6/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.