Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 7/2024

26.04.2023 | Technical Article

Effect of Chloride Ion on the Corrosion Behavior of 316L Stainless Steels in Hydrofluoric Acid Solution

verfasst von: Can Guo, Shouwen Shi, Hailong Dai, Feng Lu, Xu Chen

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 7/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, the corrosion behavior of 316L stainless steel (SS) in hydrofluoric acid and chloride-containing hydrofluoric acid solutions were investigated. The immersion results show that the addition of chloride ions yields a tremendous improvement in corrosion resistance. The corrosion rate of 316L SS remarkably reduces from 68.80 to 0.48 mm/a while adding 1 M chloride ions into 23 M hydrofluoric acid solution. Through morphology and corrosion composition analysis, the high corrosion resistance in chloride-containing hydrofluoric acid solution is mainly attributed to the interaction between competitive adsorption and selective corrosion. Due to competitive adsorption, chloride ion preferentially adsorbs and dominates corrosion. It shifts the preferentially corroded phase and increases the compactness of the product layer, resulting in a remarkable reduction of the corrosion rate. Additionally, a model has been developed to further elucidate the inhibition effect of chloride ions on the corrosion of 316L SS in hydrofluoric acid solution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Dai, S. Shi, C. Guo, and X. Chen, Pits Formation and Stress Corrosion Cracking Behavior of Q345R in Hydrofluoric Acid, Corros. Sci., 2020, 166, p 108443.CrossRef H. Dai, S. Shi, C. Guo, and X. Chen, Pits Formation and Stress Corrosion Cracking Behavior of Q345R in Hydrofluoric Acid, Corros. Sci., 2020, 166, p 108443.CrossRef
2.
Zurück zum Zitat H. Dai, S. Shi, L. Yang, J. Hu, C. Liu, C. Guo, and X. Chen, Effects of Elemental Composition and Microstructure Inhomogeneity on the Corrosion Behavior of Nickel-Based Alloys in Hydrofluoric Acid Solution, Corros. Sci., 2020, 176, p 108917.CrossRef H. Dai, S. Shi, L. Yang, J. Hu, C. Liu, C. Guo, and X. Chen, Effects of Elemental Composition and Microstructure Inhomogeneity on the Corrosion Behavior of Nickel-Based Alloys in Hydrofluoric Acid Solution, Corros. Sci., 2020, 176, p 108917.CrossRef
3.
Zurück zum Zitat X. Chen, L. Yang, H. Dai, and S. Shi, Exploring Factors Controlling Pre-Corrosion Fatigue of 316L Austenitic Stainless Steel in Hydrofluoric Acid, Eng. Fail. Anal., 2020, 113, p 1–12.CrossRef X. Chen, L. Yang, H. Dai, and S. Shi, Exploring Factors Controlling Pre-Corrosion Fatigue of 316L Austenitic Stainless Steel in Hydrofluoric Acid, Eng. Fail. Anal., 2020, 113, p 1–12.CrossRef
4.
Zurück zum Zitat Y.-W. Jang, J.-H. Hong, and J.-G. Kim, Effects of Copper on the Corrosion Properties of Low-Alloy Steel in an Acid-Chloride Environment, Met. Mater. Int., 2009, 15(4), p 623–629.CrossRef Y.-W. Jang, J.-H. Hong, and J.-G. Kim, Effects of Copper on the Corrosion Properties of Low-Alloy Steel in an Acid-Chloride Environment, Met. Mater. Int., 2009, 15(4), p 623–629.CrossRef
5.
Zurück zum Zitat H. Dai, S. Shi, L. Yang, C. Guo, and X. Chen, Recent Progress on the Corrosion Behavior of Metallic Materials in HF Solution, Corros. Rev., 2021, 39(4), p 313–337.CrossRef H. Dai, S. Shi, L. Yang, C. Guo, and X. Chen, Recent Progress on the Corrosion Behavior of Metallic Materials in HF Solution, Corros. Rev., 2021, 39(4), p 313–337.CrossRef
6.
Zurück zum Zitat A.B. Khiabani, A. Ghanbari, B. Yarmand, A. Zamanian, and M. Mozafari, Improving Corrosion Behavior and in vitro Bioactivity of Plasma Electrolytic Oxidized AZ91 Magnesium Alloy using Calcium Fluoride Containing Electrolyte, Mater. Lett., 2018, 212, p 98–102.CrossRef A.B. Khiabani, A. Ghanbari, B. Yarmand, A. Zamanian, and M. Mozafari, Improving Corrosion Behavior and in vitro Bioactivity of Plasma Electrolytic Oxidized AZ91 Magnesium Alloy using Calcium Fluoride Containing Electrolyte, Mater. Lett., 2018, 212, p 98–102.CrossRef
7.
Zurück zum Zitat S. Zhang, L. Hou, H. Du, H. Wei, B. Liu, and Y. Wei, A Study on the Interaction Between Chloride Ions and CO2 Towards Carbon Steel Corrosion, Corros. Sci., 2020, 167, p 108531.CrossRef S. Zhang, L. Hou, H. Du, H. Wei, B. Liu, and Y. Wei, A Study on the Interaction Between Chloride Ions and CO2 Towards Carbon Steel Corrosion, Corros. Sci., 2020, 167, p 108531.CrossRef
8.
Zurück zum Zitat S.J. Pawel, Corrosion of High-Alloy Materials in Aqueous Hydrofluoric Acid Environments, Corrosion, 1994, 50(12), p 963–971.CrossRef S.J. Pawel, Corrosion of High-Alloy Materials in Aqueous Hydrofluoric Acid Environments, Corrosion, 1994, 50(12), p 963–971.CrossRef
9.
Zurück zum Zitat S.J. Pawel, Corrosion of High-Alloy Materials in Aqueous Hydrofluoric Acid Environments, Corrosion, 1994, 50(12), p 963–971.CrossRef S.J. Pawel, Corrosion of High-Alloy Materials in Aqueous Hydrofluoric Acid Environments, Corrosion, 1994, 50(12), p 963–971.CrossRef
10.
Zurück zum Zitat P. Xu, H. Chen, X. Zhou, and H. Xiang, Gel Polymer Electrolyte Based on PVDF-HFP Matrix Composited with rGO-PEG-NH2 for High-Performance Lithium Ion Battery, J. Membr. Sci., 2020, 617, p 118660.CrossRef P. Xu, H. Chen, X. Zhou, and H. Xiang, Gel Polymer Electrolyte Based on PVDF-HFP Matrix Composited with rGO-PEG-NH2 for High-Performance Lithium Ion Battery, J. Membr. Sci., 2020, 617, p 118660.CrossRef
11.
Zurück zum Zitat M. Cai, D. Yuan, X. Zhang, Y. Pu, and X. Ning, Lithium Ion Battery Separator with Improved Performance via Side-by-Side Bicomponent Electrospinning of PVDF-HFP/PI Followed by 3D Thermal Crosslinking, J. Power Sources, 2020, 461, p 228123.CrossRef M. Cai, D. Yuan, X. Zhang, Y. Pu, and X. Ning, Lithium Ion Battery Separator with Improved Performance via Side-by-Side Bicomponent Electrospinning of PVDF-HFP/PI Followed by 3D Thermal Crosslinking, J. Power Sources, 2020, 461, p 228123.CrossRef
12.
Zurück zum Zitat Z. Wang, W. Han, H. Tang, and H. Liu, CaBaFx Composite as Robust Catalyst for the Pyrolysis of 1-Chloro-1, 1-Difluoroethane to Vinylidene Fluoride, Catal. Commun., 2019, 120, p 42–45.CrossRef Z. Wang, W. Han, H. Tang, and H. Liu, CaBaFx Composite as Robust Catalyst for the Pyrolysis of 1-Chloro-1, 1-Difluoroethane to Vinylidene Fluoride, Catal. Commun., 2019, 120, p 42–45.CrossRef
13.
Zurück zum Zitat W. Shi, G. Zou, S. Xiang, X. Ji, G. Ma, and R.G. Ballinger, Corrosion Behavior of 904L Austenitic Stainless Steel in Hydrofluoric Acid, RSC Adv., 2018, 8(5), p 2811–2817.PubMedPubMedCentralCrossRef W. Shi, G. Zou, S. Xiang, X. Ji, G. Ma, and R.G. Ballinger, Corrosion Behavior of 904L Austenitic Stainless Steel in Hydrofluoric Acid, RSC Adv., 2018, 8(5), p 2811–2817.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Y. Li, Y. Hou, E. Onodera, C. Zhang, Y. Koizumi, and A. Chiba, Ex-situ Observation on the Dissolution Behaviour of Ni-16Cr-15Mo and Ni-30Co-16Cr-15Mo Alloys in Hydrofluoric Acid, Corros. Sci., 2015, 90, p 133–139.CrossRef Y. Li, Y. Hou, E. Onodera, C. Zhang, Y. Koizumi, and A. Chiba, Ex-situ Observation on the Dissolution Behaviour of Ni-16Cr-15Mo and Ni-30Co-16Cr-15Mo Alloys in Hydrofluoric Acid, Corros. Sci., 2015, 90, p 133–139.CrossRef
15.
Zurück zum Zitat X. Fan, Y. Li, N. Tang, H. Bian, Y. Hou, Y. Koizumi, and A. Chiba, Effects of Partially Substituting Cobalt for Nickel on the Corrosion Resistance of a Ni-16Cr-15Mo Alloy to Aqueous Hydrofluoric Acid, Corros. Sci., 2014, 78, p 101–110.CrossRef X. Fan, Y. Li, N. Tang, H. Bian, Y. Hou, Y. Koizumi, and A. Chiba, Effects of Partially Substituting Cobalt for Nickel on the Corrosion Resistance of a Ni-16Cr-15Mo Alloy to Aqueous Hydrofluoric Acid, Corros. Sci., 2014, 78, p 101–110.CrossRef
16.
Zurück zum Zitat M.G. Fontana, Corrosion Engineering, 3rd ed. McGraw-Hill, New York, 1986. M.G. Fontana, Corrosion Engineering, 3rd ed. McGraw-Hill, New York, 1986.
17.
Zurück zum Zitat R.B. Rebak, J.R. Dillman, P. Crook, and C.V.V. Shawber, Corrosion Behavior of Nickel Alloys in Wet Hydrofluoric Acid, Mater. Corros., 2001, 52(4), p 289–297.CrossRef R.B. Rebak, J.R. Dillman, P. Crook, and C.V.V. Shawber, Corrosion Behavior of Nickel Alloys in Wet Hydrofluoric Acid, Mater. Corros., 2001, 52(4), p 289–297.CrossRef
18.
Zurück zum Zitat C. Guo, S. Shi, H. Dai, Yu. Jingtai, and Xu. Chen, Corrosion Mechanisms of Nickel-Based Alloys in Chloride-Containing Hydrofluoric Acid Solution, Eng. Fail. Anal., 2022, 140, p 106580.CrossRef C. Guo, S. Shi, H. Dai, Yu. Jingtai, and Xu. Chen, Corrosion Mechanisms of Nickel-Based Alloys in Chloride-Containing Hydrofluoric Acid Solution, Eng. Fail. Anal., 2022, 140, p 106580.CrossRef
19.
Zurück zum Zitat C. Schillmoler, Corrosion Resistance of Nickel-Containing Alloys in Hydrofluoric Acid, Hydrogen Fluoride and Fluorine, NIDI Tech. Ser., 1993, 10074, p 1–10. C. Schillmoler, Corrosion Resistance of Nickel-Containing Alloys in Hydrofluoric Acid, Hydrogen Fluoride and Fluorine, NIDI Tech. Ser., 1993, 10074, p 1–10.
20.
Zurück zum Zitat Z.B. Wang, H.X. Hu, and Y.G. Zheng, Synergistic Effects of Fluoride and Chloride on General Corrosion Behavior of AISI 316 Stainless Steel and Pure Titanium in H2SO4 Solutions, Corros. Sci., 2018, 130, p 203–217.CrossRef Z.B. Wang, H.X. Hu, and Y.G. Zheng, Synergistic Effects of Fluoride and Chloride on General Corrosion Behavior of AISI 316 Stainless Steel and Pure Titanium in H2SO4 Solutions, Corros. Sci., 2018, 130, p 203–217.CrossRef
21.
Zurück zum Zitat J. Salomé, C. Bachmann, K.D. Oliveira-Vigier, S. Brunet, and J. Lopez, Effect of the Experimental Conditions in the Transformation of the bis-1, 3-Trichloromethylbenzene in the Presence of HF and a LEWIS ACID, J. Mol. Catal. A Chem., 2008, 279(1), p 119–127.CrossRef J. Salomé, C. Bachmann, K.D. Oliveira-Vigier, S. Brunet, and J. Lopez, Effect of the Experimental Conditions in the Transformation of the bis-1, 3-Trichloromethylbenzene in the Presence of HF and a LEWIS ACID, J. Mol. Catal. A Chem., 2008, 279(1), p 119–127.CrossRef
22.
Zurück zum Zitat A. Piou, S. Celerier, and S. Brunet, Selective Fluorination of Substituted Trichloromethyl Benzenes by HF in Liquid Phase: Preparation of Fluorinated Building Blocks, J. Fluor. Chem., 2010, 131(11), p 1241–1246.CrossRef A. Piou, S. Celerier, and S. Brunet, Selective Fluorination of Substituted Trichloromethyl Benzenes by HF in Liquid Phase: Preparation of Fluorinated Building Blocks, J. Fluor. Chem., 2010, 131(11), p 1241–1246.CrossRef
23.
Zurück zum Zitat J. Salomé, C. Mauger, S. Brunet, and V. Schanen, Synthesis Conditions and Activity of Various Lewis Acids for the Fluorination of Trichloromethoxy-Benzene by HF in Liquid Phase, J. Fluor. Chem., 2004, 125, p 1947.CrossRef J. Salomé, C. Mauger, S. Brunet, and V. Schanen, Synthesis Conditions and Activity of Various Lewis Acids for the Fluorination of Trichloromethoxy-Benzene by HF in Liquid Phase, J. Fluor. Chem., 2004, 125, p 1947.CrossRef
24.
Zurück zum Zitat K.O. Christe, Chemical Synthesis of Elemental Fluorine, Inorg. Chem., 1986, 25(21), p 3722–3724.CrossRef K.O. Christe, Chemical Synthesis of Elemental Fluorine, Inorg. Chem., 1986, 25(21), p 3722–3724.CrossRef
25.
Zurück zum Zitat L.H. Gong and W. Zhu, Corrosion Failure Analysis of a Perforated F32 Reactor, Mater. Test., 2019, 61(6), p 533–536.CrossRef L.H. Gong and W. Zhu, Corrosion Failure Analysis of a Perforated F32 Reactor, Mater. Test., 2019, 61(6), p 533–536.CrossRef
26.
Zurück zum Zitat S. Brunet, Examples of Catalytic and Selective Routes for Fluorinated Building Blocks, Org. Process Res. Dev., 2014, 18(8), p 1067–1071.CrossRef S. Brunet, Examples of Catalytic and Selective Routes for Fluorinated Building Blocks, Org. Process Res. Dev., 2014, 18(8), p 1067–1071.CrossRef
27.
Zurück zum Zitat H.D. Quan, H.E. Yang, M. Tamura, and A. Sekiya, SbF5/PAF—A Novel Fluorinating Reagent in Preparing Fluorine Compounds, J. Fluor. Chem., 2004, 125, p 1169–1172.CrossRef H.D. Quan, H.E. Yang, M. Tamura, and A. Sekiya, SbF5/PAF—A Novel Fluorinating Reagent in Preparing Fluorine Compounds, J. Fluor. Chem., 2004, 125, p 1169–1172.CrossRef
28.
Zurück zum Zitat E. Meissner and E. Milchert, Kinetics of Tetrachloromethane Fluorination by Hydrogen Fluoride in the Presence of Antimony Pentachloride, J. Fluor. Chem., 2003, 119(1), p 89–95.CrossRef E. Meissner and E. Milchert, Kinetics of Tetrachloromethane Fluorination by Hydrogen Fluoride in the Presence of Antimony Pentachloride, J. Fluor. Chem., 2003, 119(1), p 89–95.CrossRef
29.
Zurück zum Zitat S.D. Santacesaria, Basile, Carra, Kinetics of Chloroform Fluorination by HF Catalyzed by Antimony Pentachloride, J. Fluor. Chem., 1989, 44(1), p 87–111.CrossRef S.D. Santacesaria, Basile, Carra, Kinetics of Chloroform Fluorination by HF Catalyzed by Antimony Pentachloride, J. Fluor. Chem., 1989, 44(1), p 87–111.CrossRef
30.
Zurück zum Zitat N. Maruyama, D. Mori, S. Hiromoto, K. Kanazawa, and M. Nakamura, Fatigue Strength of 316L-Type Stainless Steel in Simulated Body Fluids, Corros. Sci., 2011, 53(6), p 2222–2227.CrossRef N. Maruyama, D. Mori, S. Hiromoto, K. Kanazawa, and M. Nakamura, Fatigue Strength of 316L-Type Stainless Steel in Simulated Body Fluids, Corros. Sci., 2011, 53(6), p 2222–2227.CrossRef
31.
Zurück zum Zitat R.M. Kain, Crevice Corrosion Behavior of Stainless Steel in Seawater and Related Environments, Corrosion, 1984, 40, p 313–321.CrossRef R.M. Kain, Crevice Corrosion Behavior of Stainless Steel in Seawater and Related Environments, Corrosion, 1984, 40, p 313–321.CrossRef
32.
Zurück zum Zitat A.S. Fouda, G.Y. El-Ewady, and S. Fathy, Role of Some Pyrazol-5-One Derivatives as Corrosion Inhibitors for 316L Stainless Steel in 1 M HCl, Desalin. Water Treat., 2013, 51, p 2202–2213.CrossRef A.S. Fouda, G.Y. El-Ewady, and S. Fathy, Role of Some Pyrazol-5-One Derivatives as Corrosion Inhibitors for 316L Stainless Steel in 1 M HCl, Desalin. Water Treat., 2013, 51, p 2202–2213.CrossRef
33.
Zurück zum Zitat Z.H. Jin, H.H. Ge, W.W. Lin, Y.W. Zong, S.J. Liu, and J.M. Shi, Corrosion Behaviour of 316L Stainless Steel and Anti-Corrosion Materials in a High Acidified Chloride Solution, Appl. Surf. Sci., 2014, 322(15), p 47–56.CrossRef Z.H. Jin, H.H. Ge, W.W. Lin, Y.W. Zong, S.J. Liu, and J.M. Shi, Corrosion Behaviour of 316L Stainless Steel and Anti-Corrosion Materials in a High Acidified Chloride Solution, Appl. Surf. Sci., 2014, 322(15), p 47–56.CrossRef
34.
Zurück zum Zitat G. Faita, F. Mazza, and G. Bianchi, Role of Water and Ionic Solvation in Localized Corrosion Phenomena, NACE Houston, 1974, 2974, p 34–44. G. Faita, F. Mazza, and G. Bianchi, Role of Water and Ionic Solvation in Localized Corrosion Phenomena, NACE Houston, 1974, 2974, p 34–44.
35.
Zurück zum Zitat J.L. Trompette, The Comparative Breakdown of Passivity of Tin by Fluorides and Chlorides Interpreted through the “Law of Matching Affinities” Concept, Corros. Sci., 2015, 94(may), p 288–293.CrossRef J.L. Trompette, The Comparative Breakdown of Passivity of Tin by Fluorides and Chlorides Interpreted through the “Law of Matching Affinities” Concept, Corros. Sci., 2015, 94(may), p 288–293.CrossRef
36.
Zurück zum Zitat S.B. Basame and H.S. White, Pitting Corrosion of Titanium the Relationship Between Pitting Potential and Competitive Anion Adsorption at the Oxide Film/Electrolyte Interface, J. Electrochem. Soc., 2000, 147(4), p 1376.CrossRef S.B. Basame and H.S. White, Pitting Corrosion of Titanium the Relationship Between Pitting Potential and Competitive Anion Adsorption at the Oxide Film/Electrolyte Interface, J. Electrochem. Soc., 2000, 147(4), p 1376.CrossRef
37.
Zurück zum Zitat A. Pardo, E. Otero, M.C. Merino, M.D. Lopez, and M.V. Utrilla, Pitting and Crevice Corrosion Behaviour of High Alloy Stainless Steels in Chloride-Fluoride Solutions, Mat. Corros., 2000, 51, p 850–858.CrossRef A. Pardo, E. Otero, M.C. Merino, M.D. Lopez, and M.V. Utrilla, Pitting and Crevice Corrosion Behaviour of High Alloy Stainless Steels in Chloride-Fluoride Solutions, Mat. Corros., 2000, 51, p 850–858.CrossRef
38.
Zurück zum Zitat M.A. Rodríguez, R.M. Carranza, and R.B. Rebak, Influence of Halide Ions and Alloy Microstructure on the Passive and Localized Corrosion Behavior of Alloy 22, Metall. Mater. Trans. A, 2005, 36, p 1179–1185.CrossRef M.A. Rodríguez, R.M. Carranza, and R.B. Rebak, Influence of Halide Ions and Alloy Microstructure on the Passive and Localized Corrosion Behavior of Alloy 22, Metall. Mater. Trans. A, 2005, 36, p 1179–1185.CrossRef
39.
Zurück zum Zitat S. Pahlavan, S. Moazen, I. Taji, K. Saffar, M. Hamrah, M.H. Moayed, and S.M. Beidokhti, Pitting Corrosion of Martensitic Stainless Steel in Halide Bearing Solutions, Corros. Sci., 2016, 112, p 233–240.CrossRef S. Pahlavan, S. Moazen, I. Taji, K. Saffar, M. Hamrah, M.H. Moayed, and S.M. Beidokhti, Pitting Corrosion of Martensitic Stainless Steel in Halide Bearing Solutions, Corros. Sci., 2016, 112, p 233–240.CrossRef
40.
Zurück zum Zitat A.V. Rodrigues, N.T. Oliveira, M.L. Santos, and A.C. Guastaldi, Electrochemical Behavior and Corrosion Resistance of Ti-15Mo Alloy in Naturally-Aerated Solutions, Containing Chloride and Fluoride Ions, J. Mater. Sci. Mater. Med., 2015, 26(1), p 5323.PubMedCrossRef A.V. Rodrigues, N.T. Oliveira, M.L. Santos, and A.C. Guastaldi, Electrochemical Behavior and Corrosion Resistance of Ti-15Mo Alloy in Naturally-Aerated Solutions, Containing Chloride and Fluoride Ions, J. Mater. Sci. Mater. Med., 2015, 26(1), p 5323.PubMedCrossRef
41.
Zurück zum Zitat X. Li, J. Wang, E.H. Han, and W. Ke, Influence of Fluoride and Chloride on Corrosion Behavior of NiTi Orthodontic Wires, Acta Biomater., 2007, 3(5), p 807–815.PubMedCrossRef X. Li, J. Wang, E.H. Han, and W. Ke, Influence of Fluoride and Chloride on Corrosion Behavior of NiTi Orthodontic Wires, Acta Biomater., 2007, 3(5), p 807–815.PubMedCrossRef
42.
Zurück zum Zitat J.P. Gomes and E.J. Kassab, Assessment of Nickel Titanium and Beta Titanium Corrosion Resistance Behavior in Fluoride and Chloride Environments, Angle Orthod., 2013, 83(5), p 864–869.PubMedPubMedCentralCrossRef J.P. Gomes and E.J. Kassab, Assessment of Nickel Titanium and Beta Titanium Corrosion Resistance Behavior in Fluoride and Chloride Environments, Angle Orthod., 2013, 83(5), p 864–869.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat J.M. Bastidas, C. Fosca, B. Chico, and E. Otero, Weight Loss and Electrochemical Results for Two Super-Austenitic Stainless Steels in Chloride-Fluoride Mixtures, Corros. Sci., 1996, 38, p 559–563.CrossRef J.M. Bastidas, C. Fosca, B. Chico, and E. Otero, Weight Loss and Electrochemical Results for Two Super-Austenitic Stainless Steels in Chloride-Fluoride Mixtures, Corros. Sci., 1996, 38, p 559–563.CrossRef
44.
Zurück zum Zitat F.C. Full, Effect of Delta Ferrite on the Hot Cracking of Stainless Steel, Weld. J., 1967, 46(9), p 399s–409s. F.C. Full, Effect of Delta Ferrite on the Hot Cracking of Stainless Steel, Weld. J., 1967, 46(9), p 399s–409s.
45.
Zurück zum Zitat R. Jiang, G. Zou, W. Shi, Y. Liang, and S. Xiang, Corrosion Behavior of Plasma-Nitrided 904L Austenitic Stainless Steel in Hydrofluoric Acid, J. Mater. Eng. Perform., 2019, 28(3), p 1863–1872.CrossRef R. Jiang, G. Zou, W. Shi, Y. Liang, and S. Xiang, Corrosion Behavior of Plasma-Nitrided 904L Austenitic Stainless Steel in Hydrofluoric Acid, J. Mater. Eng. Perform., 2019, 28(3), p 1863–1872.CrossRef
46.
Zurück zum Zitat K. Oh, S. Ahn, K. Eom, and H. Kwon, A Study on the Localized Corrosion and Repassivation Kinetics of Fe-20Cr-xNi (x=0-20 wt.%) Stainless Steels via Electrochemical Analysis, Corros. Sci., 2015, 100, p 158–168.CrossRef K. Oh, S. Ahn, K. Eom, and H. Kwon, A Study on the Localized Corrosion and Repassivation Kinetics of Fe-20Cr-xNi (x=0-20 wt.%) Stainless Steels via Electrochemical Analysis, Corros. Sci., 2015, 100, p 158–168.CrossRef
47.
Zurück zum Zitat L. Wang, A. Seyeux, and P. Marcus, Thermal Stability of the Passive Film Formed on 316L Stainless Steel Surface Studied by ToF-SIMS, Corros. Sci., 2020, 165, p 108395.CrossRef L. Wang, A. Seyeux, and P. Marcus, Thermal Stability of the Passive Film Formed on 316L Stainless Steel Surface Studied by ToF-SIMS, Corros. Sci., 2020, 165, p 108395.CrossRef
48.
Zurück zum Zitat B. Maa, A. Xw, C. Kf, A. Iow, and A. Yh, Corrosion and Metal Release Investigations of Selective Laser Melted 316L Stainless Steel in a Synthetic Physiological Fluid Containing Proteins and in Diluted Hydrochloric Acid, Electrochim. Acta, 2020, 354, p 136748.CrossRef B. Maa, A. Xw, C. Kf, A. Iow, and A. Yh, Corrosion and Metal Release Investigations of Selective Laser Melted 316L Stainless Steel in a Synthetic Physiological Fluid Containing Proteins and in Diluted Hydrochloric Acid, Electrochim. Acta, 2020, 354, p 136748.CrossRef
49.
Zurück zum Zitat L. Wegrelius, F. Falkenberg, and I. Olefjord, Passivation of Stainless Steels in Hydrochloric Acid, J. Electrochem. Soc., 1999, 146(4), p 1937–1406.CrossRef L. Wegrelius, F. Falkenberg, and I. Olefjord, Passivation of Stainless Steels in Hydrochloric Acid, J. Electrochem. Soc., 1999, 146(4), p 1937–1406.CrossRef
50.
Zurück zum Zitat W. Fredriksson and K. Edstrrom, XPS Study of Duplex Stainless Steel as a Possible Current Collector in a Li-Ion Battery, Electrochim. Acta, 2012, 79(30), p 82–94.CrossRef W. Fredriksson and K. Edstrrom, XPS Study of Duplex Stainless Steel as a Possible Current Collector in a Li-Ion Battery, Electrochim. Acta, 2012, 79(30), p 82–94.CrossRef
52.
Zurück zum Zitat Z. Wang, C. Carrière, A. Seyeux, S. Zanna, D. Mercier, and P. Marcus, Thermal Stability of Surface Oxides on Nickel Alloys (NiCr and NiCrMo) Investigated by XPS and ToF-SIMS, Corros. Sci., 2022, 576, p 151836. Z. Wang, C. Carrière, A. Seyeux, S. Zanna, D. Mercier, and P. Marcus, Thermal Stability of Surface Oxides on Nickel Alloys (NiCr and NiCrMo) Investigated by XPS and ToF-SIMS, Corros. Sci., 2022, 576, p 151836.
53.
Zurück zum Zitat C.R. Clayton and Y.C. Lu, A Bipolar Model of the Passivity of Stainless Steels. III: The Mechanism of MoO42 Formation and Incorporation, Corros. Sci., 1989, 29(7), p 881–898.CrossRef C.R. Clayton and Y.C. Lu, A Bipolar Model of the Passivity of Stainless Steels. III: The Mechanism of MoO42 Formation and Incorporation, Corros. Sci., 1989, 29(7), p 881–898.CrossRef
54.
Zurück zum Zitat J.D. Henderson, X. Li, F.P. Filice, D. Zagidulin, M.C. Biesinger, B. Kobe, D.W. Shoesmith, K. Ogle, and J.J. Nol, Investigating the Role of Mo and Cr during the Activation and Passivation of Ni-based Alloys in Acidic Chloride Solution, J. Electrochem. Soc., 2021, 168(2), p 021509.CrossRef J.D. Henderson, X. Li, F.P. Filice, D. Zagidulin, M.C. Biesinger, B. Kobe, D.W. Shoesmith, K. Ogle, and J.J. Nol, Investigating the Role of Mo and Cr during the Activation and Passivation of Ni-based Alloys in Acidic Chloride Solution, J. Electrochem. Soc., 2021, 168(2), p 021509.CrossRef
55.
Zurück zum Zitat G. Yang, F. Hui, W. Xu, and X.P. Qu, in International Conference on Planarization/cmp Technology, 2015. G. Yang, F. Hui, W. Xu, and X.P. Qu, in International Conference on Planarization/cmp Technology, 2015.
56.
Zurück zum Zitat T. Hanawa, S. Hiromoto, and K. Asami, Characterization of the Surface Oxide film of a Co-Cr-Mo Alloy after Being Located in Quasi-Biological Environments using XPS, Appl. Surf. Sci., 2001, 183(1–2), p 68–75.CrossRef T. Hanawa, S. Hiromoto, and K. Asami, Characterization of the Surface Oxide film of a Co-Cr-Mo Alloy after Being Located in Quasi-Biological Environments using XPS, Appl. Surf. Sci., 2001, 183(1–2), p 68–75.CrossRef
57.
Zurück zum Zitat A. Katrib, A. Benadda, J.W. Sobczak, and G. Maire, XPS and Catalytic Properties of the Bifunctional Supported MoO2(Hx)ac on TiO2 for the Hydroisomerization Reactions of Hexanes and 1-Hexene, Appl. Catal. A Gen., 2003, 242(1), p 31–40.CrossRef A. Katrib, A. Benadda, J.W. Sobczak, and G. Maire, XPS and Catalytic Properties of the Bifunctional Supported MoO2(Hx)ac on TiO2 for the Hydroisomerization Reactions of Hexanes and 1-Hexene, Appl. Catal. A Gen., 2003, 242(1), p 31–40.CrossRef
58.
Zurück zum Zitat C. Rnek, K. Davut, M. Kocaba, A. Bayatli, and M. Urgen, Understanding Corrosion Morphology of Duplex Stainless Steel wire in Chloride Electrolyte, Corros. Mater. Degrad., 2021, 2(3), p 397–411.CrossRef C. Rnek, K. Davut, M. Kocaba, A. Bayatli, and M. Urgen, Understanding Corrosion Morphology of Duplex Stainless Steel wire in Chloride Electrolyte, Corros. Mater. Degrad., 2021, 2(3), p 397–411.CrossRef
59.
Zurück zum Zitat S. Aoki, H. Yakuwa, K. Mitsuhashi, and J. Sakai, Dissolution Behavior of α and γ Phases of a Duplex Stainless Steel in a Simulated Crevice Solution, J. Electrochem. Soc., 2010, 25(37), p 17–22. S. Aoki, H. Yakuwa, K. Mitsuhashi, and J. Sakai, Dissolution Behavior of α and γ Phases of a Duplex Stainless Steel in a Simulated Crevice Solution, J. Electrochem. Soc., 2010, 25(37), p 17–22.
60.
Zurück zum Zitat C. Ornek, J. Walton, T. Hashimoto, T.L. Ladwein, S.B. Lyon, and D.L. Engelberg, Characterization of 475 °C Embrittlement of Duplex Stainless Steel Microstructure via Scanning Kelvin Probe Force Microscopy and Magnetic Force Microscopy, J. Electrochem. Soc., 2017, 164(6), p 208–217.CrossRef C. Ornek, J. Walton, T. Hashimoto, T.L. Ladwein, S.B. Lyon, and D.L. Engelberg, Characterization of 475 °C Embrittlement of Duplex Stainless Steel Microstructure via Scanning Kelvin Probe Force Microscopy and Magnetic Force Microscopy, J. Electrochem. Soc., 2017, 164(6), p 208–217.CrossRef
61.
Zurück zum Zitat C. Rnek and D.L. Engelberg, SKPFM Measured Volta Potential Correlated with Strain Localisation in Microstructure to Understand Corrosion Susceptibility of Cold-Rolled Grade 2205 Duplex Stainless Steel, Corros. Sci., 2015, 99, p 164–171.CrossRef C. Rnek and D.L. Engelberg, SKPFM Measured Volta Potential Correlated with Strain Localisation in Microstructure to Understand Corrosion Susceptibility of Cold-Rolled Grade 2205 Duplex Stainless Steel, Corros. Sci., 2015, 99, p 164–171.CrossRef
62.
Zurück zum Zitat C. Rnek and D.L. Engelberg, Correlative EBSD and SKPFM Characterisation of Microstructure Development to Assist Determination of Corrosion Propensity in Grade 2205 Duplex Stainless Steel, J. Mater. Sci., 2016, 51(4), p 1931–1948.CrossRef C. Rnek and D.L. Engelberg, Correlative EBSD and SKPFM Characterisation of Microstructure Development to Assist Determination of Corrosion Propensity in Grade 2205 Duplex Stainless Steel, J. Mater. Sci., 2016, 51(4), p 1931–1948.CrossRef
64.
Zurück zum Zitat C. Rnek and D.L. Engelberg, Towards Understanding the Effect of Deformation Mode on Stress Corrosion Cracking Susceptibility of Grade 2205 Duplex Stainless Steel, Mater. Sci. Eng. A, 2016, 666, p 269–279.CrossRef C. Rnek and D.L. Engelberg, Towards Understanding the Effect of Deformation Mode on Stress Corrosion Cracking Susceptibility of Grade 2205 Duplex Stainless Steel, Mater. Sci. Eng. A, 2016, 666, p 269–279.CrossRef
65.
Zurück zum Zitat M. Zhu, Q. Zhang, Y. Yuan, S. Guo, and Y. Huang, Study on the Correlation Between Passive Film and AC Corrosion Behavior of 2507 Super Duplex Stainless Steel in Simulated Marine Environment, J. Electroanal. Chem., 2020, 864, p 114072.CrossRef M. Zhu, Q. Zhang, Y. Yuan, S. Guo, and Y. Huang, Study on the Correlation Between Passive Film and AC Corrosion Behavior of 2507 Super Duplex Stainless Steel in Simulated Marine Environment, J. Electroanal. Chem., 2020, 864, p 114072.CrossRef
66.
Zurück zum Zitat H. Tian, X. Cheng, Y. Wang, C. Dong, and X. Li, Effect of Mo on Interaction Between α/γ Phases of Duplex Stainless Steel, Electrochim. Acta, 2018, 267, p 255–268.CrossRef H. Tian, X. Cheng, Y. Wang, C. Dong, and X. Li, Effect of Mo on Interaction Between α/γ Phases of Duplex Stainless Steel, Electrochim. Acta, 2018, 267, p 255–268.CrossRef
67.
Zurück zum Zitat J. Ritter, In Surface and Materials Engineering, Corrosion Laboratory, Aalen University of Applied Sciences, Aalen, Germany, 2013. J. Ritter, In Surface and Materials Engineering, Corrosion Laboratory, Aalen University of Applied Sciences, Aalen, Germany, 2013.
68.
Zurück zum Zitat I.H. Lo, Y. Fu, C.J. Lin, and W.T. Tsai, Effect of Electrolyte Composition on the Active-to-Passive Transition Behavior of 2205 Duplex Stainless Steel in H2SO4/HCl Solution, Corros. Sci., 2006, 48, p 696–708.CrossRef I.H. Lo, Y. Fu, C.J. Lin, and W.T. Tsai, Effect of Electrolyte Composition on the Active-to-Passive Transition Behavior of 2205 Duplex Stainless Steel in H2SO4/HCl Solution, Corros. Sci., 2006, 48, p 696–708.CrossRef
69.
Zurück zum Zitat J.S. Lee, K. Fushimi, T. Nakanishi, Y. Hasegawa, and Y.S. Park, Corrosion Behaviour of Ferrite and Austenite Phases on Super Duplex Stainless Steel in a Modified Green-Death Solution, Corros. Sci., 2014, 89, p 111–117.CrossRef J.S. Lee, K. Fushimi, T. Nakanishi, Y. Hasegawa, and Y.S. Park, Corrosion Behaviour of Ferrite and Austenite Phases on Super Duplex Stainless Steel in a Modified Green-Death Solution, Corros. Sci., 2014, 89, p 111–117.CrossRef
70.
Zurück zum Zitat F. Lequien and G. Moine, Corrosion of a 316L Stainless Steel in a Gaseous Environment Polluted with HCl: Mechanism, Mater. Corros., 2020, 72(3), p 483–494.CrossRef F. Lequien and G. Moine, Corrosion of a 316L Stainless Steel in a Gaseous Environment Polluted with HCl: Mechanism, Mater. Corros., 2020, 72(3), p 483–494.CrossRef
71.
Zurück zum Zitat A. Kocijan, D.K. Merl, and M. Jenko, The Corrosion Behaviour of Austenitic and Duplex Stainless Steels in Artificial Saliva with the Addition of Fluoride, Corros. Sci., 2011, 53(2), p 776–783.CrossRef A. Kocijan, D.K. Merl, and M. Jenko, The Corrosion Behaviour of Austenitic and Duplex Stainless Steels in Artificial Saliva with the Addition of Fluoride, Corros. Sci., 2011, 53(2), p 776–783.CrossRef
72.
Zurück zum Zitat Y. Yang, L. Guo, and H. Liu, Influence of Fluoride Ions on Corrosion Performance of 316L Stainless Steel as Bipolar Plate Material in Simulated PEMFC Anode Environments, Int. J. Hydrog. Energy, 2012, 37(2), p 1875–1883.CrossRef Y. Yang, L. Guo, and H. Liu, Influence of Fluoride Ions on Corrosion Performance of 316L Stainless Steel as Bipolar Plate Material in Simulated PEMFC Anode Environments, Int. J. Hydrog. Energy, 2012, 37(2), p 1875–1883.CrossRef
Metadaten
Titel
Effect of Chloride Ion on the Corrosion Behavior of 316L Stainless Steels in Hydrofluoric Acid Solution
verfasst von
Can Guo
Shouwen Shi
Hailong Dai
Feng Lu
Xu Chen
Publikationsdatum
26.04.2023
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 7/2024
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-08220-w

Weitere Artikel der Ausgabe 7/2024

Journal of Materials Engineering and Performance 7/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.