Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 3/2021

27.01.2021

Effect of CNTs on the intermetallic compound growth between Sn solder and Cu substrate during aging and reflowing

verfasst von: Kai-kai Xu, Liang Zhang, Nan Jiang

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sn is the main interconnect material for three-dimensional (3D) Packaging of chip stacking in electronic packaging. In this paper, the intermetallic compound (IMC) produced through an interfacial reaction between Sn-xCNTs (x = 0, 0.075 wt%) solder and a Cu substrate was evaluated at 130 °C, 150 °C, and 170 °C for 30, 50, 100 h and after multiple reflows (3, 6, 9). In Sn-0.075CNTs system, CNTs inhibited the growth of Cu6Sn5 and refine the microstructure of solder joint. The growth rate of IMC decreased after reflowing and aging for 100 h. Compared to pure Sn/Cu system, the thickness of Cu6Sn5 and Cu3Sn was the thinner when the CNTs addition amount was 0.075 wt%. Some voids and cracks were formed in solder joints after reflowing and thermal aging. At this time, the IMC growth activation energies of Sn solder is 33.256 kJ/mol, and that of Sn-0.075CNTs composite solder is 58.19 kJ/mol.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat N. Odashima, O. Minho, M. Kajihara et al., Formation of intermetallic compounds and microstructure evolution due to isothermal reactive diffusion at the interface between solid Co and liquid Sn. J. Electron. Mater. 49(2), 1568–1576 (2020)CrossRef N. Odashima, O. Minho, M. Kajihara et al., Formation of intermetallic compounds and microstructure evolution due to isothermal reactive diffusion at the interface between solid Co and liquid Sn. J. Electron. Mater. 49(2), 1568–1576 (2020)CrossRef
2.
Zurück zum Zitat M. Zhao, L. Zhang, Z.Q. Liu et al., Structure and properties of Sn–Cu lead-free solders in electronics packaging. Sci. Technol. Adv. Mater. 20(1), 421–444 (2019)CrossRef M. Zhao, L. Zhang, Z.Q. Liu et al., Structure and properties of Sn–Cu lead-free solders in electronics packaging. Sci. Technol. Adv. Mater. 20(1), 421–444 (2019)CrossRef
3.
Zurück zum Zitat K.K. Xu, L. Zhang, L. Sun et al., The influence of carbon nanotubes on the properties of Sn solder. Mater. Trans. 61(3), 718–722 (2020)CrossRef K.K. Xu, L. Zhang, L. Sun et al., The influence of carbon nanotubes on the properties of Sn solder. Mater. Trans. 61(3), 718–722 (2020)CrossRef
4.
Zurück zum Zitat J. Mittal, K. Lin, Diffusion of elements during reflow aging of Sn–Zn solder in liquid state on Ni/Cu substrate theoretical and experimental study. Soldering Surf. Mount Technol. 30(3), 137–144 (2018)CrossRef J. Mittal, K. Lin, Diffusion of elements during reflow aging of Sn–Zn solder in liquid state on Ni/Cu substrate theoretical and experimental study. Soldering Surf. Mount Technol. 30(3), 137–144 (2018)CrossRef
5.
Zurück zum Zitat L. Zhang, Z.Q. Liu, Inhibition of intermetallic compounds growth at Sn-58Bi/Cu interface bearing CuZnAl memory particles (2–6 μm). J. Mater. Sci. 31(3), 2466–2480 (2020) L. Zhang, Z.Q. Liu, Inhibition of intermetallic compounds growth at Sn-58Bi/Cu interface bearing CuZnAl memory particles (2–6 μm). J. Mater. Sci. 31(3), 2466–2480 (2020)
6.
Zurück zum Zitat F. Peng, W. Liu, Y. Huang et al., Effect of stearic acid coating on anti-oxidation property of Sn–Ag–Cu solder powder. Solder. Surf. Mount Technol. 31(1), 68–74 (2019)CrossRef F. Peng, W. Liu, Y. Huang et al., Effect of stearic acid coating on anti-oxidation property of Sn–Ag–Cu solder powder. Solder. Surf. Mount Technol. 31(1), 68–74 (2019)CrossRef
7.
Zurück zum Zitat H. Chen, T. Chou, C. Fleshman et al., Investigating the effect of Ag content on mechanical properties of Sn–Ag–Cu Micro-BGA joints. J. Electron. Mater. 48(10), 6866–6871 (2019)CrossRef H. Chen, T. Chou, C. Fleshman et al., Investigating the effect of Ag content on mechanical properties of Sn–Ag–Cu Micro-BGA joints. J. Electron. Mater. 48(10), 6866–6871 (2019)CrossRef
8.
Zurück zum Zitat H. Ye, S.B. Xue, J.D. Luo et al., Properties and interfacial microstructure of Sn–Zn–Ga solder joint with rare earth Pr addition. Mater. Des. 46, 816–823 (2013)CrossRef H. Ye, S.B. Xue, J.D. Luo et al., Properties and interfacial microstructure of Sn–Zn–Ga solder joint with rare earth Pr addition. Mater. Des. 46, 816–823 (2013)CrossRef
9.
Zurück zum Zitat M.Y. Xiong, L. Zhang, H. Peng et al., Stress analysis and structural optimization of 3D IC package based on the Taguchi method. Soldering Surf. Mount Technolo. 32(1), 42–47 (2020)CrossRef M.Y. Xiong, L. Zhang, H. Peng et al., Stress analysis and structural optimization of 3D IC package based on the Taguchi method. Soldering Surf. Mount Technolo. 32(1), 42–47 (2020)CrossRef
10.
Zurück zum Zitat L. Zhang, Z.Q. Liu, S.W. Chen et al., Materials, processing and reliability of low temperature bonding in 3D chip stacking. J. Alloy. Compd. 750, 980–995 (2018)CrossRef L. Zhang, Z.Q. Liu, S.W. Chen et al., Materials, processing and reliability of low temperature bonding in 3D chip stacking. J. Alloy. Compd. 750, 980–995 (2018)CrossRef
11.
Zurück zum Zitat L. Sun, M.H. Chen, L. Zhang, Microstructure evolution and grain orientation of IMC in Cu-Sn TLP bonding solder joints. J. Alloy. Compd. 786, 677–687 (2019)CrossRef L. Sun, M.H. Chen, L. Zhang, Microstructure evolution and grain orientation of IMC in Cu-Sn TLP bonding solder joints. J. Alloy. Compd. 786, 677–687 (2019)CrossRef
12.
Zurück zum Zitat M.Y. Xiong, L. Zhang, L. Sun et al., Effect of CuZnAl particles addition on microstructure of Cu/Sn58Bi/Cu TLP bonding solder joints. Vacuum 167, 301–306 (2019)CrossRef M.Y. Xiong, L. Zhang, L. Sun et al., Effect of CuZnAl particles addition on microstructure of Cu/Sn58Bi/Cu TLP bonding solder joints. Vacuum 167, 301–306 (2019)CrossRef
13.
Zurück zum Zitat T. Hu, Y. Li, Y.C. Chan et al., Effect of nano Al2O3 particles doping on electromigration and mechanical properties of Sn-58Bi solder joints. Microelectron. Reliab. 55(8), 1226–1233 (2015)CrossRef T. Hu, Y. Li, Y.C. Chan et al., Effect of nano Al2O3 particles doping on electromigration and mechanical properties of Sn-58Bi solder joints. Microelectron. Reliab. 55(8), 1226–1233 (2015)CrossRef
14.
Zurück zum Zitat C. Lee, K.D. Min, H.J. Park et al., Effect of Sn-decorated MWCNTs on the mechanical reliability of Sn-58Bi Solder. Electron. Mater. Lett. 15(6), 693–701 (2019)CrossRef C. Lee, K.D. Min, H.J. Park et al., Effect of Sn-decorated MWCNTs on the mechanical reliability of Sn-58Bi Solder. Electron. Mater. Lett. 15(6), 693–701 (2019)CrossRef
15.
Zurück zum Zitat R.M. Shalaby, H. Elzanaty, Effect of nano-Al2O3 particles on the microstructure and mechanical performance of melt-spun process Sn-3.5Ag composite solder. J. Mater. Sci. 31, 5907–5913 (2020) R.M. Shalaby, H. Elzanaty, Effect of nano-Al2O3 particles on the microstructure and mechanical performance of melt-spun process Sn-3.5Ag composite solder. J. Mater. Sci. 31, 5907–5913 (2020)
16.
Zurück zum Zitat M. Yang, H.J. Ji, S. Wang et al., Effects of Ag content on the interfacial reactions between liquid Sn–Ag–Cu solders and Cu substrates during soldering. J. Alloy. Compd. 679, 18–25 (2016)CrossRef M. Yang, H.J. Ji, S. Wang et al., Effects of Ag content on the interfacial reactions between liquid Sn–Ag–Cu solders and Cu substrates during soldering. J. Alloy. Compd. 679, 18–25 (2016)CrossRef
17.
Zurück zum Zitat M.Y. Xiong, L. Zhang, Interface reaction and intermetallic compound growth behavior of Sn–Ag–Cu lead-free solder joints on different substrates in electronic packaging. J. Mater. Sci. 54(2), 1741–1768 (2019)CrossRef M.Y. Xiong, L. Zhang, Interface reaction and intermetallic compound growth behavior of Sn–Ag–Cu lead-free solder joints on different substrates in electronic packaging. J. Mater. Sci. 54(2), 1741–1768 (2019)CrossRef
18.
Zurück zum Zitat Mookam N, Tunthawiroon P, Kanlayasiri K. Effects of copper content in Sn-based solder on the intermetallic phase formation and growth during soldering. 9th International Conference on Mechatronics and Manufacturing. 2018, 361:012008 Mookam N, Tunthawiroon P, Kanlayasiri K. Effects of copper content in Sn-based solder on the intermetallic phase formation and growth during soldering. 9th International Conference on Mechatronics and Manufacturing. 2018, 361:012008
19.
Zurück zum Zitat N. Mookam, K. Kanlayasiri, Evolution of intermetallic compounds between Sn–0.3Ag–0.7Cu low-silver lead-free solder and Cu substrate during thermal aging. J. Mater. Sci. Technol. 28(1), 53–59 (2012)CrossRef N. Mookam, K. Kanlayasiri, Evolution of intermetallic compounds between Sn–0.3Ag–0.7Cu low-silver lead-free solder and Cu substrate during thermal aging. J. Mater. Sci. Technol. 28(1), 53–59 (2012)CrossRef
20.
Zurück zum Zitat S. Furtauer, D. Li, D.M. Cupid et al., The Cu–Sn phase diagram, Part I: new experimental results. Intermetallics 16, 142–147 (2013)CrossRef S. Furtauer, D. Li, D.M. Cupid et al., The Cu–Sn phase diagram, Part I: new experimental results. Intermetallics 16, 142–147 (2013)CrossRef
21.
Zurück zum Zitat J. Bang, D. Yu, Y. Ko et al., Intermetallic compound growth between Sn–Cu–Cr lead-free solder and Cu substrate. Microelectron. Reliab. 99(99), 62–73 (2019)CrossRef J. Bang, D. Yu, Y. Ko et al., Intermetallic compound growth between Sn–Cu–Cr lead-free solder and Cu substrate. Microelectron. Reliab. 99(99), 62–73 (2019)CrossRef
22.
Zurück zum Zitat K.N. Tu, Solder Joint Technology: Materials, Properties, and Reliability (Springer, New York, 2007), p. 117 K.N. Tu, Solder Joint Technology: Materials, Properties, and Reliability (Springer, New York, 2007), p. 117
23.
Zurück zum Zitat L. Tsao, S.Y. Chang, C.I. Lee et al., Effects of nano-Al2O3 additions on microstructure development and hardness of Sn3.5Ag0.5Cu solder. Mater. Design 31(10), 4831–4835 (2010)CrossRef L. Tsao, S.Y. Chang, C.I. Lee et al., Effects of nano-Al2O3 additions on microstructure development and hardness of Sn3.5Ag0.5Cu solder. Mater. Design 31(10), 4831–4835 (2010)CrossRef
24.
Zurück zum Zitat D. Ma, W.D. Wang, S.K. Lahiri, Scallop formation and dissolution of Cu–Sn intermetallic compound during solder reflow. J. Appl. Phys. 91(5), 3312 (2002)CrossRef D. Ma, W.D. Wang, S.K. Lahiri, Scallop formation and dissolution of Cu–Sn intermetallic compound during solder reflow. J. Appl. Phys. 91(5), 3312 (2002)CrossRef
25.
Zurück zum Zitat J. Bang, D. Yu, Y. Ko et al., Intermetallic compound formation and mechanical property of Sn-Cu-xCr/Cu lead-free solder joint[J]. J. Alloy. Compd. 728, 992–1001 (2017)CrossRef J. Bang, D. Yu, Y. Ko et al., Intermetallic compound formation and mechanical property of Sn-Cu-xCr/Cu lead-free solder joint[J]. J. Alloy. Compd. 728, 992–1001 (2017)CrossRef
26.
Zurück zum Zitat N. Dariavach, P. Callahan, J. Liang et al., Intermetallic growth kinetics for Sn-Ag, Sn-Cu, and Sn-Ag-Cu lead-free solders on Cu, Ni, and Fe-42Ni substrates. J. Electron. Mater. 35(7), 1581–1592 (2006)CrossRef N. Dariavach, P. Callahan, J. Liang et al., Intermetallic growth kinetics for Sn-Ag, Sn-Cu, and Sn-Ag-Cu lead-free solders on Cu, Ni, and Fe-42Ni substrates. J. Electron. Mater. 35(7), 1581–1592 (2006)CrossRef
27.
Zurück zum Zitat J. Yoon, B. Noh, B. Kim et al., Wettability and interfacial reactions of Sn-Ag-Cu/Cu and Sn-Ag-Ni/Cu solder joints. J. Alloy. Compd. 486(1), 142–147 (2009)CrossRef J. Yoon, B. Noh, B. Kim et al., Wettability and interfacial reactions of Sn-Ag-Cu/Cu and Sn-Ag-Ni/Cu solder joints. J. Alloy. Compd. 486(1), 142–147 (2009)CrossRef
28.
Zurück zum Zitat J.W. Yoon, Y.H. Lee, D.G. Kim et al., Intermetallic compound layer growth at the interface between Sn-Cu-Ni solder and Cu substrate. J. Alloy. Compd. 381(1–2), 151–157 (2004)CrossRef J.W. Yoon, Y.H. Lee, D.G. Kim et al., Intermetallic compound layer growth at the interface between Sn-Cu-Ni solder and Cu substrate. J. Alloy. Compd. 381(1–2), 151–157 (2004)CrossRef
29.
Zurück zum Zitat L.C. Tsao, Suppressing effect of 0.5 wt% nano-TiO2 addition into Sn-3.5Ag-0.5Cu solder alloy on the intermetallic growth with Cu substrate during isothermal aging. J. Alloys Compd. 509(33), 8441–8448 (2011)CrossRef L.C. Tsao, Suppressing effect of 0.5 wt% nano-TiO2 addition into Sn-3.5Ag-0.5Cu solder alloy on the intermetallic growth with Cu substrate during isothermal aging. J. Alloys Compd. 509(33), 8441–8448 (2011)CrossRef
Metadaten
Titel
Effect of CNTs on the intermetallic compound growth between Sn solder and Cu substrate during aging and reflowing
verfasst von
Kai-kai Xu
Liang Zhang
Nan Jiang
Publikationsdatum
27.01.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 3/2021
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-04755-z

Weitere Artikel der Ausgabe 3/2021

Journal of Materials Science: Materials in Electronics 3/2021 Zur Ausgabe