Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 4/2024

29.03.2023 | Technical Article

Effect of Cold Rolling on the Microstructure Evolution, Mechanical, and Corrosion Properties of AlCoCrFeNi2.4 High-Entropy Alloy

verfasst von: Mehrab Seifpour Bijnavandi, Armin Ghaderi, Kamran Dehghani

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 4/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study investigates the microstructure, mechanical, and corrosion properties of as-cast and cold-rolled \({\mathrm{AlCoCrFeNi}}_{2.4}\) high-entropy alloy at room temperature. The microstructure is examined using x-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy-dispersive x-ray spectroscopy (EDS). X-ray diffraction (XRD) analysis revealed that the constituent phases in the as-cast sample were FCC and BCC. The as-cast microstructure was observed to contain a primary FCC dendrite and a secondary FCC (\({L1}_{2}\)) + BCC (\({\mathrm{B}}_{2}\)) typical hyper-eutectic structure in the interdendritic region. Furthermore, the cold-rolled microstructure was severely deformed along the cold rolling direction. With the increase in thickness reduction from cold rolling, the microhardness, yield strength, shear strength, and ultimate strength of the alloy all increased, despite a decrease in ductility. Moreover, after the alloy was cold-rolled to 90%, the alloy demonstrated yield strengths of 1791 MPa, ultimate tensile strengths of 1956 MPa, and elongation to fracture values of 10.17%. In addition to these results, the as-cast sample demonstrated excellent corrosion resistance in a NaCl-based solution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.-W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6, p 299–303.CrossRef J.-W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6, p 299–303.CrossRef
2.
Zurück zum Zitat B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development Inequiatomic Multicomponent Alloys, Mater. Sci. Eng. A., 2004, 375–377, p 213–218.CrossRef B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development Inequiatomic Multicomponent Alloys, Mater. Sci. Eng. A., 2004, 375–377, p 213–218.CrossRef
3.
Zurück zum Zitat Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable High-Entropy Dual-Phase Alloys Overcome the Strength-Ductility Trade-Off, Nature, 2016, 534, p 227–230.ADSCrossRefPubMed Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable High-Entropy Dual-Phase Alloys Overcome the Strength-Ductility Trade-Off, Nature, 2016, 534, p 227–230.ADSCrossRefPubMed
4.
Zurück zum Zitat A. Ghaderi, H. Moghanni, and K. Dehghani, Microstructural Evolution and Mechanical Properties of Al0.5CoCrFeNi High-entropy Alloy After Cold Rolling and Annealing Treatments, J. Mater. Eng. Perform., 2021, 30, p 1–9.CrossRef A. Ghaderi, H. Moghanni, and K. Dehghani, Microstructural Evolution and Mechanical Properties of Al0.5CoCrFeNi High-entropy Alloy After Cold Rolling and Annealing Treatments, J. Mater. Eng. Perform., 2021, 30, p 1–9.CrossRef
5.
Zurück zum Zitat M.C. Gao, J.-W. Yeh, P.K. Liaw, and Y. Zhang Eds., High-entropy alloys. Springer International Publishing, Cham, 2016 M.C. Gao, J.-W. Yeh, P.K. Liaw, and Y. Zhang Eds., High-entropy alloys. Springer International Publishing, Cham, 2016
6.
Zurück zum Zitat H. Fu, H. Zhao, S. Song, Z. Zhang, and J. Xie, Evolution of the Cold-Rolling and Recrystallization Textures in FeNiCoAlNbB Shape Memory Alloy, J. Alloys Compd., 2016, 686, p 1008–1016.CrossRef H. Fu, H. Zhao, S. Song, Z. Zhang, and J. Xie, Evolution of the Cold-Rolling and Recrystallization Textures in FeNiCoAlNbB Shape Memory Alloy, J. Alloys Compd., 2016, 686, p 1008–1016.CrossRef
7.
Zurück zum Zitat Z. Fu, L. Jiang, J.L. Wardini, B.E. MacDonald, H. Wen, W. Xiong, D. Zhang, Y. Zhou, T.J. Rupert, W. Chen, and E.J. Lavernia, A High-Entropy Alloy with Hierarchical Nanoprecipitates and Ultrahigh Strength, Sci. Adv., 2018, 4, p e8712.ADSCrossRef Z. Fu, L. Jiang, J.L. Wardini, B.E. MacDonald, H. Wen, W. Xiong, D. Zhang, Y. Zhou, T.J. Rupert, W. Chen, and E.J. Lavernia, A High-Entropy Alloy with Hierarchical Nanoprecipitates and Ultrahigh Strength, Sci. Adv., 2018, 4, p e8712.ADSCrossRef
8.
Zurück zum Zitat Y. Zou, S. Maiti, W. Steurer, and R. Spolenak, Size-Dependent Plasticity in an Nb25Mo25Ta25W25 Refractory High-Entropy Alloy, Acta Mater., 2014, 65, p 85–97.ADSCrossRef Y. Zou, S. Maiti, W. Steurer, and R. Spolenak, Size-Dependent Plasticity in an Nb25Mo25Ta25W25 Refractory High-Entropy Alloy, Acta Mater., 2014, 65, p 85–97.ADSCrossRef
9.
Zurück zum Zitat C.W. Tsai, M.H. Tsai, J.W. Yeh, and C.C. Yang, Effect of Temperature on Mechanical Properties of Al0.5CoCrCuFeNi Wrought Alloy, J. Alloys Compd., 2010, 490, p 160–165.CrossRef C.W. Tsai, M.H. Tsai, J.W. Yeh, and C.C. Yang, Effect of Temperature on Mechanical Properties of Al0.5CoCrCuFeNi Wrought Alloy, J. Alloys Compd., 2010, 490, p 160–165.CrossRef
10.
Zurück zum Zitat O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward, Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy, J. Alloys Compd., 2011, 509, p 6043–6048.CrossRef O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward, Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy, J. Alloys Compd., 2011, 509, p 6043–6048.CrossRef
11.
Zurück zum Zitat A. Gali and E.P.P. George, Tensile Properties of High- and Medium-Entropy Alloys, Intermetallics, 2013, 39, p 74–78.CrossRef A. Gali and E.P.P. George, Tensile Properties of High- and Medium-Entropy Alloys, Intermetallics, 2013, 39, p 74–78.CrossRef
12.
Zurück zum Zitat F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P.P. George, The Influences of Temperature and Microstructure on the Tensile Properties of a CoCrFeMnNi High-Entropy Alloy, Acta Mater., 2013, 61(5743), p 5755. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P.P. George, The Influences of Temperature and Microstructure on the Tensile Properties of a CoCrFeMnNi High-Entropy Alloy, Acta Mater., 2013, 61(5743), p 5755.
13.
Zurück zum Zitat J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, and Z.P. Lu, Effects of Al Addition on Structural Evolution and Tensile Properties of the FeCoNiCrMn High-Entropy Alloy System, Acta Mater., 2014, 62, p 105–113.ADSCrossRef J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, and Z.P. Lu, Effects of Al Addition on Structural Evolution and Tensile Properties of the FeCoNiCrMn High-Entropy Alloy System, Acta Mater., 2014, 62, p 105–113.ADSCrossRef
14.
Zurück zum Zitat Y. Zou, S. Maiti, W. Steurer, and R. Spolenak, Size-Dependent Plasticity in an Nb25Mo25Ta25W25 Refractory High-Entropy Alloy, Acta Mater, 2014, 65, p 85–97.ADSCrossRef Y. Zou, S. Maiti, W. Steurer, and R. Spolenak, Size-Dependent Plasticity in an Nb25Mo25Ta25W25 Refractory High-Entropy Alloy, Acta Mater, 2014, 65, p 85–97.ADSCrossRef
15.
Zurück zum Zitat M. Wang, L. Yiping, T. Wang, C. Zhang, Z. Cao, T. Li, and P.K. Liaw, A Novel Bulk Eutectic High-Entropy Alloy with Outstanding as-cast Specific Yield Strengths at Elevated Temperatures, Scr. Mater., 2021, 204, p 114132.CrossRef M. Wang, L. Yiping, T. Wang, C. Zhang, Z. Cao, T. Li, and P.K. Liaw, A Novel Bulk Eutectic High-Entropy Alloy with Outstanding as-cast Specific Yield Strengths at Elevated Temperatures, Scr. Mater., 2021, 204, p 114132.CrossRef
16.
Zurück zum Zitat M.J. Yao, K.G. Pradeep, C.C. Tasan, and D. Raabe, A Novel Single Phase Non-Equiatomic FeMnNiCoCr High-Entropy Alloy with Exceptional Phase Stability and Tensile Ductility, Scr. Mater., 2014, 72–73, p 5–8.CrossRef M.J. Yao, K.G. Pradeep, C.C. Tasan, and D. Raabe, A Novel Single Phase Non-Equiatomic FeMnNiCoCr High-Entropy Alloy with Exceptional Phase Stability and Tensile Ductility, Scr. Mater., 2014, 72–73, p 5–8.CrossRef
17.
Zurück zum Zitat Y.Y. Chen, U.T. Hong, J.W. Yeh, and H.C. Shih, Selected Corrosion Behaviors of a Cu0.5NiAlCoCrFeSi Bulk Glassy Alloy in 288 °C High-Purity Water, Scr. Mater., 2006, 54, p 1997–2001.CrossRef Y.Y. Chen, U.T. Hong, J.W. Yeh, and H.C. Shih, Selected Corrosion Behaviors of a Cu0.5NiAlCoCrFeSi Bulk Glassy Alloy in 288 °C High-Purity Water, Scr. Mater., 2006, 54, p 1997–2001.CrossRef
18.
Zurück zum Zitat Y.X. Wang, Y.J. Yang, H.J. Yang, M. Zhang, S.G. Ma, and J.W. Qiao, Microstructure and Wear Properties of Nitrided AlCoCrFeNi High-Entropy Alloy, Mater. Chem. Phys., 2017, 210, p 233.ADSCrossRef Y.X. Wang, Y.J. Yang, H.J. Yang, M. Zhang, S.G. Ma, and J.W. Qiao, Microstructure and Wear Properties of Nitrided AlCoCrFeNi High-Entropy Alloy, Mater. Chem. Phys., 2017, 210, p 233.ADSCrossRef
19.
Zurück zum Zitat Mingliang Wang, Lu. Yiping, Guojia Zhang, Hongzhi Cui, Xu. Dingfeng, Na. Wei, and Tingju Li, A Novel High-Entropy Alloy Composite Coating with Core-Shell Structures Prepared by Plasma Cladding, Vacuum, 2021, 184, p 109905.ADSCrossRef Mingliang Wang, Lu. Yiping, Guojia Zhang, Hongzhi Cui, Xu. Dingfeng, Na. Wei, and Tingju Li, A Novel High-Entropy Alloy Composite Coating with Core-Shell Structures Prepared by Plasma Cladding, Vacuum, 2021, 184, p 109905.ADSCrossRef
20.
Zurück zum Zitat B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345, p 1153–1158.ADSCrossRefPubMed B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345, p 1153–1158.ADSCrossRefPubMed
21.
Zurück zum Zitat L. Zhang, Y. Zhou, X. Jin, X.Y. Dua, and B.S. Li, The Microstructure and High-Temperature Properties of Novel Nano Precipitation-Hardened Face Centered Cubic High-Entropy Superalloys, Scr. Mater., 2018, 146, p 226–230.CrossRef L. Zhang, Y. Zhou, X. Jin, X.Y. Dua, and B.S. Li, The Microstructure and High-Temperature Properties of Novel Nano Precipitation-Hardened Face Centered Cubic High-Entropy Superalloys, Scr. Mater., 2018, 146, p 226–230.CrossRef
22.
Zurück zum Zitat X.Z. Gao, Y.P. Lu, B. Zhang, N.N. Liang, G.Z. Wu, G. Sha, J.Z. Liu, and Y.H. Zhao, Microstructural Origins of High Strength and High Ductility in an AlCoCrFeNi21 Eutectic High-Entropy Alloy, Acta Mater., 2017, 141, p 59–66.ADSCrossRef X.Z. Gao, Y.P. Lu, B. Zhang, N.N. Liang, G.Z. Wu, G. Sha, J.Z. Liu, and Y.H. Zhao, Microstructural Origins of High Strength and High Ductility in an AlCoCrFeNi21 Eutectic High-Entropy Alloy, Acta Mater., 2017, 141, p 59–66.ADSCrossRef
23.
Zurück zum Zitat Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable High-Entropy Dual-Phase Alloys Overcome the Strength–Ductility Trade-off, Nature, 2016, 534, p 227–234.ADSCrossRefPubMed Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable High-Entropy Dual-Phase Alloys Overcome the Strength–Ductility Trade-off, Nature, 2016, 534, p 227–234.ADSCrossRefPubMed
24.
Zurück zum Zitat Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, and Z. Cao, A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys, Sci. Rep., 2014, 4, p 6200.ADSCrossRefPubMedPubMedCentral Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, and Z. Cao, A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys, Sci. Rep., 2014, 4, p 6200.ADSCrossRefPubMedPubMedCentral
25.
Zurück zum Zitat I.S. Wani, T. Bhattacharjee, S. Sheikh, Y.P. Lu, S. Chatterjee, P. Bhattacharjee, S. Guo, and N. Tsuji, Ultrafine-Grained AlCoCrFeNi2.1 Eutectic High-Entropy Alloy, Mater. Res. Lett., 2016, 4(3), p 174–179.CrossRef I.S. Wani, T. Bhattacharjee, S. Sheikh, Y.P. Lu, S. Chatterjee, P. Bhattacharjee, S. Guo, and N. Tsuji, Ultrafine-Grained AlCoCrFeNi2.1 Eutectic High-Entropy Alloy, Mater. Res. Lett., 2016, 4(3), p 174–179.CrossRef
26.
Zurück zum Zitat I.S. Wani, T. Bhattacharjee, S. Sheikh, Y.P. Lu, S. Chatterjee, P.P. Bhattacharjee, S. Guo, and N. Tsuji, Ultrafine-Grained AlCoCrFeNi2.1 Eutectic High-Entropy Alloy, Mater. Rese. Lett., 2016, 4, p 174–179.CrossRef I.S. Wani, T. Bhattacharjee, S. Sheikh, Y.P. Lu, S. Chatterjee, P.P. Bhattacharjee, S. Guo, and N. Tsuji, Ultrafine-Grained AlCoCrFeNi2.1 Eutectic High-Entropy Alloy, Mater. Rese. Lett., 2016, 4, p 174–179.CrossRef
27.
Zurück zum Zitat S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of Valence Electron Concentration on Stability of FCC or BCC Phase in High Entropy Alloys, J. Appl. Phys., 2011, 109, p 103505.ADSCrossRef S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of Valence Electron Concentration on Stability of FCC or BCC Phase in High Entropy Alloys, J. Appl. Phys., 2011, 109, p 103505.ADSCrossRef
28.
Zurück zum Zitat S.G. Ma, Z.D. Chen, and Y. Zhang, Evolution of Microstructures and Properties of the AlxCrCuFeNi2 High-Entropy Alloys, Mater. Sci. Forum, 2013, 745–746, p 706–714.CrossRef S.G. Ma, Z.D. Chen, and Y. Zhang, Evolution of Microstructures and Properties of the AlxCrCuFeNi2 High-Entropy Alloys, Mater. Sci. Forum, 2013, 745–746, p 706–714.CrossRef
29.
Zurück zum Zitat Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, and T. Li, Directly Cast Bulk Eutectic and Near-Eutectic High Entropy Alloys with Balanced Strength and Ductility in a Wide Temperature Range, Acta Mater., 2017, 124, p 143–150.ADSCrossRef Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, and T. Li, Directly Cast Bulk Eutectic and Near-Eutectic High Entropy Alloys with Balanced Strength and Ductility in a Wide Temperature Range, Acta Mater., 2017, 124, p 143–150.ADSCrossRef
30.
Zurück zum Zitat Y. Zhang, X. Wang, J. Li, Y. Huang, Y. Lu, and X. Sun, Deformation Mechanism During High-Temperature Tensile Test in an Eutectic High-Entropy Alloy AlCoCrFeNi2.1, Mater. Sci. Eng. A, 2018, 724, p 148–155.CrossRef Y. Zhang, X. Wang, J. Li, Y. Huang, Y. Lu, and X. Sun, Deformation Mechanism During High-Temperature Tensile Test in an Eutectic High-Entropy Alloy AlCoCrFeNi2.1, Mater. Sci. Eng. A, 2018, 724, p 148–155.CrossRef
31.
Zurück zum Zitat Y.F. Wang, S.G. Ma, X.H. Chen, J.Y. Shi, Y. Zhang, and J.W. Qiao, Optimizing Mechanical Properties of AlCoCrFeNiTix High-Entropy Alloys by Tailoring Microstructures, Acta Metall Sin, 2013, 26, p 277–284.CrossRef Y.F. Wang, S.G. Ma, X.H. Chen, J.Y. Shi, Y. Zhang, and J.W. Qiao, Optimizing Mechanical Properties of AlCoCrFeNiTix High-Entropy Alloys by Tailoring Microstructures, Acta Metall Sin, 2013, 26, p 277–284.CrossRef
32.
Zurück zum Zitat L. Cao, X. Wang, Y. Wang, L. Zhang, Y. Yang, F. Liu, and Y. Cui, Microstructural Evolution, Phase Formation and Mechanical Properties of Multi-component AlCoCrFeNix Alloys Microstructural Evolution, Phase Formation and Mechanical Properties of Multi-component AlCoCrFeNix Alloys, Appl. Phys. A, 2019, 125, p 699–704.ADSCrossRef L. Cao, X. Wang, Y. Wang, L. Zhang, Y. Yang, F. Liu, and Y. Cui, Microstructural Evolution, Phase Formation and Mechanical Properties of Multi-component AlCoCrFeNix Alloys Microstructural Evolution, Phase Formation and Mechanical Properties of Multi-component AlCoCrFeNix Alloys, Appl. Phys. A, 2019, 125, p 699–704.ADSCrossRef
33.
Zurück zum Zitat J. Hou, M. Zhang, S. Ma, P.K. Liaw, Y. Zhang, and J. Qiao, Strengthening in Al0.25CoCrFeNi High-Entropy Alloys by Cold Rolling, Mater. Sci. Eng. A, 2017, 707, p 593–601.CrossRef J. Hou, M. Zhang, S. Ma, P.K. Liaw, Y. Zhang, and J. Qiao, Strengthening in Al0.25CoCrFeNi High-Entropy Alloys by Cold Rolling, Mater. Sci. Eng. A, 2017, 707, p 593–601.CrossRef
34.
Zurück zum Zitat H. Pal, A. Chanda, and M. De, Characterisation of microstructure of isothermal martensite in Fe–23Ni–3.8Mn by Rietveld method, J. Alloys Compd., 1998, 278, p 209–215.CrossRef H. Pal, A. Chanda, and M. De, Characterisation of microstructure of isothermal martensite in Fe–23Ni–3.8Mn by Rietveld method, J. Alloys Compd., 1998, 278, p 209–215.CrossRef
35.
Zurück zum Zitat A. Chanda and M. De, X-ray Characterization of the Microstructure of α-CuTi Alloys by Rietveld’s method, J. Alloys Compd., 2000, 313, p 104–114.CrossRef A. Chanda and M. De, X-ray Characterization of the Microstructure of α-CuTi Alloys by Rietveld’s method, J. Alloys Compd., 2000, 313, p 104–114.CrossRef
36.
Zurück zum Zitat G. Dini, R. Ueji, A. Najafizadeh, and S.M. Monir-Vaghefi, Flow Stress Analysis of TWIP Steel via the XRD Measurement of Dislocation Density, Mater. Sci. Eng. A, 2010, 527, p 2759–2763.CrossRef G. Dini, R. Ueji, A. Najafizadeh, and S.M. Monir-Vaghefi, Flow Stress Analysis of TWIP Steel via the XRD Measurement of Dislocation Density, Mater. Sci. Eng. A, 2010, 527, p 2759–2763.CrossRef
37.
Zurück zum Zitat T.T. Shun, C.H. Hung, and C.F. Lee, The Effects of Secondary Elemental Mo or Ti addition in Al0.3CoCrFeNi High-Entropy Alloy on Age Hardening at 700 °C, J. Alloys Compd., 2010, 495, p 55–58.CrossRef T.T. Shun, C.H. Hung, and C.F. Lee, The Effects of Secondary Elemental Mo or Ti addition in Al0.3CoCrFeNi High-Entropy Alloy on Age Hardening at 700 °C, J. Alloys Compd., 2010, 495, p 55–58.CrossRef
38.
Zurück zum Zitat X.F. Wang, Y. Zhang, Y. Qiao, and G.L. Chen, Novel Microstructure and Properties of Multicomponent CoCrCuFeNiTix Alloys, Intermetallics, 2007, 15, p 357–362.CrossRef X.F. Wang, Y. Zhang, Y. Qiao, and G.L. Chen, Novel Microstructure and Properties of Multicomponent CoCrCuFeNiTix Alloys, Intermetallics, 2007, 15, p 357–362.CrossRef
39.
Zurück zum Zitat J. Dutkiewicz, L. Jaworska, W. Maziarz, T. Czeppe, M. Lejkowska, A. Kubicek, and M. Pastrnak, Consolidation of Amorphous Ball-Milled Zr–Cu–Al and Zr–Ni–Ti–Cu Powders, J. Alloys Compd., 2007, 434, p 333–335.CrossRef J. Dutkiewicz, L. Jaworska, W. Maziarz, T. Czeppe, M. Lejkowska, A. Kubicek, and M. Pastrnak, Consolidation of Amorphous Ball-Milled Zr–Cu–Al and Zr–Ni–Ti–Cu Powders, J. Alloys Compd., 2007, 434, p 333–335.CrossRef
40.
Zurück zum Zitat Y.F. Kao, T.D. Lee, S.K. Chen, and Y.S. Chang, Electrochemical Passive Properties of AlxCoCrFeNi (x = 0, 0.25, 0.50, 1.00) Alloys in Sulfuric Acids, Corros. Sci., 2010, 52, p 1026–1034.CrossRef Y.F. Kao, T.D. Lee, S.K. Chen, and Y.S. Chang, Electrochemical Passive Properties of AlxCoCrFeNi (x = 0, 0.25, 0.50, 1.00) Alloys in Sulfuric Acids, Corros. Sci., 2010, 52, p 1026–1034.CrossRef
Metadaten
Titel
Effect of Cold Rolling on the Microstructure Evolution, Mechanical, and Corrosion Properties of AlCoCrFeNi2.4 High-Entropy Alloy
verfasst von
Mehrab Seifpour Bijnavandi
Armin Ghaderi
Kamran Dehghani
Publikationsdatum
29.03.2023
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 4/2024
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-08101-2

Weitere Artikel der Ausgabe 4/2024

Journal of Materials Engineering and Performance 4/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.