Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 2/2019

27.11.2018

Effect of CuS nanocrystalline particles on counter electrodes of multi-wall carbon nanotubes for QDSCs

verfasst von: Yinan Zhang, Qiming Wang, Di Wang, Wei Zheng

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

CuS nanocrystalline particles are deposited into the acid-treated multi-wall carbon nanotubes (MWCNTs) film on the fluorine-doped tin oxide glass substrate through the successive ionic layer adsorption and reaction combined with spin-coating technology to form MWCNTs/CuS composite counter electrode (CE). The CuS adding amount is changed in different cycles to discuss its effect mechanism on the photoelectric properties of MWCNTs/CuS composite CE based quantum dot sensitized solar cells (QDSCs). The TiO2 photoanodes are prepared by the electrospinning technique with CdS and ZnS as co-sensitizer. QDSCs are assembled with photoanodes, the polysulfide electrolyte and abovementioned CEs. The CEs are characterized by X-ray diffraction, transmission electron microscope and energy dispersed X-ray detector, which verifies CuS nanocrystalline particles are attached to MWCNTs successfully. The photoelectric properties are analyzed by Nyquist, Tafel and JV curves. The results show that the introduction of CuS nanocrystalline particles can promote reduction rate of polysulfide species and the short circuit current density (Jsc) to improve catalytic activity, leading to a higher power conversion efficiency (PCE). The MWCNTs based CE with deposition CuS in eight cycles exhibits the best photoelectric performance within all CE samples and the electrical conductivity of MWCNTs/8CuS CE is superior to that of Pt CE according to Nyquist and Tafel curve analysis. PCE of QDSCs with MWCNTs/8CuS CE is up to 5.186%, which is a little lower than that of Pt CE (5.250%), but it possesses a higher Jsc value (18.028 mA cm−2) than that of Pt CE (16.057 mA cm−2). The low-cost MWCNTs/CuS composite CE with simple preparation is more suitable than Pt CE for commercial application of QDSCs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C. Shen, D. Fichou, Q. Wang, Interfacial engineering for quantum-dot-sensitized solar cells. Chem. Asian J. 11, 1183–1193 (2016)CrossRef C. Shen, D. Fichou, Q. Wang, Interfacial engineering for quantum-dot-sensitized solar cells. Chem. Asian J. 11, 1183–1193 (2016)CrossRef
2.
Zurück zum Zitat Y. Cheng, E.S. Arinze, N. Palmquist, S.M. Thon, Advancing colloidal quantum dot photovoltaic technology. Nanophotonics 5, 31–54 (2016)CrossRef Y. Cheng, E.S. Arinze, N. Palmquist, S.M. Thon, Advancing colloidal quantum dot photovoltaic technology. Nanophotonics 5, 31–54 (2016)CrossRef
3.
Zurück zum Zitat K.V. Vokhmintcev, P.S. Samokhvalov, I. Nabiev, Charge transfer and separation in photoexcited quantum dot-based systems. Nano Today 11, 189–211 (2016)CrossRef K.V. Vokhmintcev, P.S. Samokhvalov, I. Nabiev, Charge transfer and separation in photoexcited quantum dot-based systems. Nano Today 11, 189–211 (2016)CrossRef
4.
Zurück zum Zitat B.K. Liu, Y.F. Xue, J.T. Zhang, D.J. Wang, T.F. Xie, X.Y. Suo, L.L. Mu, H.Z. Shi, Study on photo-induced charge transfer properties in CdS quantum-dot-sensitized mesoporous TiO2 photoelectrode. J. Mater. Sci.: Mater. Electron. 27, 10213–10220 (2016) B.K. Liu, Y.F. Xue, J.T. Zhang, D.J. Wang, T.F. Xie, X.Y. Suo, L.L. Mu, H.Z. Shi, Study on photo-induced charge transfer properties in CdS quantum-dot-sensitized mesoporous TiO2 photoelectrode. J. Mater. Sci.: Mater. Electron. 27, 10213–10220 (2016)
5.
Zurück zum Zitat J.B. Sambur, T. Novet, B.A. Parkinson, Multiple exciton collection in a sensitized photovoltaic system. Science 330, 63–66 (2010)CrossRef J.B. Sambur, T. Novet, B.A. Parkinson, Multiple exciton collection in a sensitized photovoltaic system. Science 330, 63–66 (2010)CrossRef
6.
Zurück zum Zitat J.J. Tian, G.Z. Cao, Design, fabrication and modification of metal oxide semiconductor for improving conversion efficiency of excitonic solar cells. Coord. Chem. Rev. 320–321, 193–215 (2016)CrossRef J.J. Tian, G.Z. Cao, Design, fabrication and modification of metal oxide semiconductor for improving conversion efficiency of excitonic solar cells. Coord. Chem. Rev. 320–321, 193–215 (2016)CrossRef
7.
Zurück zum Zitat S.H. Pan, R. Zhou, H.H. Niu, L. Wan, B. Huang, Y.Z. Huang, F.W. Ji, J.Z. Xu, Hierarchical SnO2 hollow sub-microspheres for panchromatic PbS quantum dot-sensitized solar cells. J. Alloys Compd. 709, 187–196 (2017)CrossRef S.H. Pan, R. Zhou, H.H. Niu, L. Wan, B. Huang, Y.Z. Huang, F.W. Ji, J.Z. Xu, Hierarchical SnO2 hollow sub-microspheres for panchromatic PbS quantum dot-sensitized solar cells. J. Alloys Compd. 709, 187–196 (2017)CrossRef
8.
Zurück zum Zitat M.A. Green, Third generation photovoltaics: ultra-high conversion efficiency at low cost. Prog. Photovolt. 9, 123 (2001)CrossRef M.A. Green, Third generation photovoltaics: ultra-high conversion efficiency at low cost. Prog. Photovolt. 9, 123 (2001)CrossRef
9.
Zurück zum Zitat P.V. Kamat, Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737 (2008)CrossRef P.V. Kamat, Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737 (2008)CrossRef
10.
Zurück zum Zitat F. Malara, M. Manca, L.D. Marco, P. Pareo, G. Gigli, Flexible carbon nanotube-based composite plates as efficient monolithic counter electrodes for dye solar cells. ACS Appl. Mater. Interfaces 3, 3625–3632 (2011)CrossRef F. Malara, M. Manca, L.D. Marco, P. Pareo, G. Gigli, Flexible carbon nanotube-based composite plates as efficient monolithic counter electrodes for dye solar cells. ACS Appl. Mater. Interfaces 3, 3625–3632 (2011)CrossRef
11.
Zurück zum Zitat N. Papageorgiou, Counter-electrode function in nanocrystalline photoelectrochemical cell configurations. Coord. Chem. Rev. 248, 1421–1446 (2004)CrossRef N. Papageorgiou, Counter-electrode function in nanocrystalline photoelectrochemical cell configurations. Coord. Chem. Rev. 248, 1421–1446 (2004)CrossRef
12.
Zurück zum Zitat E. Olsen, G. Hagen, S.E. Lindquist, Dissolution of platinum in methoxy propionitrile containing LiI/I2. Sol. Energy Mater. Sol. Cells 63, 267–273 (2000)CrossRef E. Olsen, G. Hagen, S.E. Lindquist, Dissolution of platinum in methoxy propionitrile containing LiI/I2. Sol. Energy Mater. Sol. Cells 63, 267–273 (2000)CrossRef
13.
Zurück zum Zitat H. Ke, X. Zhang, W.W. Guo, A. Zhang, Z.M. Wang, C.S. Huang, N.Q. Jia, A MWCNTs-Pt nanohybrids-based highly sensitive electrochemiluminescence sensor for flavonoids assay. Talanta 171, 1–7 (2017)CrossRef H. Ke, X. Zhang, W.W. Guo, A. Zhang, Z.M. Wang, C.S. Huang, N.Q. Jia, A MWCNTs-Pt nanohybrids-based highly sensitive electrochemiluminescence sensor for flavonoids assay. Talanta 171, 1–7 (2017)CrossRef
14.
Zurück zum Zitat J.Y. Ahn, J.H. Kim, J.M. Kim, D. Lee, S.H. Kim, Multiwalled carbon nanotube thin films prepared by aerosol deposition process for use as highly efficient Pt-free counter electrodes of dye-sensitized solar cells. Sol. Energy 107, 660–667 (2014)CrossRef J.Y. Ahn, J.H. Kim, J.M. Kim, D. Lee, S.H. Kim, Multiwalled carbon nanotube thin films prepared by aerosol deposition process for use as highly efficient Pt-free counter electrodes of dye-sensitized solar cells. Sol. Energy 107, 660–667 (2014)CrossRef
15.
Zurück zum Zitat J.Y. Lin, C.H. Lien, S.W. Chou, Multi-wall carbon nanotube counter electrodes for dye-sensitized solar cells prepared by electrophoretic deposition. J. Solid State Electrochem. 16, 1415–1421 (2012)CrossRef J.Y. Lin, C.H. Lien, S.W. Chou, Multi-wall carbon nanotube counter electrodes for dye-sensitized solar cells prepared by electrophoretic deposition. J. Solid State Electrochem. 16, 1415–1421 (2012)CrossRef
16.
Zurück zum Zitat M. Zheng, J.H. Huo, Y.G. Tu, J.H. Wu, L.H. Hu, S.Y. Dai, Flowerlike molybdenum sulfide/multi-walled carbon nanotube hybrid as Pt-free counter electrode used in dye-sensitized solar cells. Electrochim. Acta 173, 252–259 (2015)CrossRef M. Zheng, J.H. Huo, Y.G. Tu, J.H. Wu, L.H. Hu, S.Y. Dai, Flowerlike molybdenum sulfide/multi-walled carbon nanotube hybrid as Pt-free counter electrode used in dye-sensitized solar cells. Electrochim. Acta 173, 252–259 (2015)CrossRef
17.
Zurück zum Zitat S.Y. Tai, C.J. Liu, S.W. Chou, F.S. Chien, J.Y. Lin, T.W. Lin, Few-layer MoS2 nanosheets coated onto multi-walled carbon nanotubes as a low-cost and highly electrocatalytic counter electrode for dye-sensitized solar cells. J. Mater. Chem. 22, 24753–24759 (2012)CrossRef S.Y. Tai, C.J. Liu, S.W. Chou, F.S. Chien, J.Y. Lin, T.W. Lin, Few-layer MoS2 nanosheets coated onto multi-walled carbon nanotubes as a low-cost and highly electrocatalytic counter electrode for dye-sensitized solar cells. J. Mater. Chem. 22, 24753–24759 (2012)CrossRef
18.
Zurück zum Zitat A.A. Memon, S.A. Patil, K.C. Sun, N. Mengal, A.A. Arbab, I.A. Sahito, S.H. Jeong, H.S. Kim, Carbonous metallic framework of multi-walled carbon nanotubes/Bi2S3 nanorods as heterostructure composite films for efficient quasi-solid state DSSCs. Electrochim. Acta 283, 997–1005 (2018)CrossRef A.A. Memon, S.A. Patil, K.C. Sun, N. Mengal, A.A. Arbab, I.A. Sahito, S.H. Jeong, H.S. Kim, Carbonous metallic framework of multi-walled carbon nanotubes/Bi2S3 nanorods as heterostructure composite films for efficient quasi-solid state DSSCs. Electrochim. Acta 283, 997–1005 (2018)CrossRef
19.
Zurück zum Zitat Y.N. Zhang, J.Y. Zhang, W. Zheng, The stability of CdS QDSCs based on optimized MWCNs/CuS counter electrodes. IEEE J. Photovolt. 8, 1142–1148 (2018)CrossRef Y.N. Zhang, J.Y. Zhang, W. Zheng, The stability of CdS QDSCs based on optimized MWCNs/CuS counter electrodes. IEEE J. Photovolt. 8, 1142–1148 (2018)CrossRef
20.
Zurück zum Zitat K.C. Huang, Y.C. Wang, P.Y. Chen, Y.H. Lai, J.H. Huang, Y.H. Chen, R.X. Dong, C.W. Chu, J.J. Lin, K.C. Ho, High performance dye-sensitized solar cells based on platinum nanoparticle/multi-wall carbon nanotube counter electrodes: the role of annealing. J. Power Sources 203, 274–281 (2012)CrossRef K.C. Huang, Y.C. Wang, P.Y. Chen, Y.H. Lai, J.H. Huang, Y.H. Chen, R.X. Dong, C.W. Chu, J.J. Lin, K.C. Ho, High performance dye-sensitized solar cells based on platinum nanoparticle/multi-wall carbon nanotube counter electrodes: the role of annealing. J. Power Sources 203, 274–281 (2012)CrossRef
21.
Zurück zum Zitat H.H. Niu, S.X. Qin, X.L. Mao, S.W. Zhang, R.B. Wang, L. Wan, J.Z. Xu, S.D. Miao, Axle-sleeve structured MWCNTs/polyaniline composite film as cost-effective counter-electrodes for high efficient dye-sensitized solar cells. Electrochim. Acta 121, 285–293 (2014)CrossRef H.H. Niu, S.X. Qin, X.L. Mao, S.W. Zhang, R.B. Wang, L. Wan, J.Z. Xu, S.D. Miao, Axle-sleeve structured MWCNTs/polyaniline composite film as cost-effective counter-electrodes for high efficient dye-sensitized solar cells. Electrochim. Acta 121, 285–293 (2014)CrossRef
22.
Zurück zum Zitat Y.M. Xiao, J.Y. Lin, J.H. Wu, S.Y. Tai, G.T. Yue, T.W. Lin, Dye-sensitized solar cells with high-performance polyaniline/multi-wall carbon nanotube counter electrodes electropolymerized by a pulse potentiostatic technique. J. Power Sources 233, 320–325 (2013)CrossRef Y.M. Xiao, J.Y. Lin, J.H. Wu, S.Y. Tai, G.T. Yue, T.W. Lin, Dye-sensitized solar cells with high-performance polyaniline/multi-wall carbon nanotube counter electrodes electropolymerized by a pulse potentiostatic technique. J. Power Sources 233, 320–325 (2013)CrossRef
23.
Zurück zum Zitat Y.M. Xiao, J.Y. Lin, S.Y. Tai, S.W. Chou, G.T. Yue, J.H. Wu, Pulse electropolymerization of high performance PEDOT/MWCNT counter electrodes for Pt-free dye-sensitized solar cells. J. Mater. Chem. 22, 19919–19925 (2012)CrossRef Y.M. Xiao, J.Y. Lin, S.Y. Tai, S.W. Chou, G.T. Yue, J.H. Wu, Pulse electropolymerization of high performance PEDOT/MWCNT counter electrodes for Pt-free dye-sensitized solar cells. J. Mater. Chem. 22, 19919–19925 (2012)CrossRef
24.
Zurück zum Zitat M.R. Al-Bahrani, W. Ahmad, H.F. Mehnane, Y. Chen, Z. Cheng, Y.H. Gao, Enhanced electrocatalytic activity by RGO/MWCNTs/NiO counter electrode for dye-sensitized solar cells. Nano-micro Lett. 7, 298–306 (2015)CrossRef M.R. Al-Bahrani, W. Ahmad, H.F. Mehnane, Y. Chen, Z. Cheng, Y.H. Gao, Enhanced electrocatalytic activity by RGO/MWCNTs/NiO counter electrode for dye-sensitized solar cells. Nano-micro Lett. 7, 298–306 (2015)CrossRef
25.
Zurück zum Zitat X.W. Xiong, D.H. Xiong, W.J. Zhang, L.Q. Ming, Z. Xu, Z.F. Huang, M.K. Wang, W. Chen, Y.B. Cheng, Spray deposition of water-soluble multiwall carbon nanotube and Cu2ZnSnSe4 nanoparticle composites as highly efficient counter electrodes in a quantum dot-sensitized solar cell system. Nanoscale 5, 6992–6998 (2013)CrossRef X.W. Xiong, D.H. Xiong, W.J. Zhang, L.Q. Ming, Z. Xu, Z.F. Huang, M.K. Wang, W. Chen, Y.B. Cheng, Spray deposition of water-soluble multiwall carbon nanotube and Cu2ZnSnSe4 nanoparticle composites as highly efficient counter electrodes in a quantum dot-sensitized solar cell system. Nanoscale 5, 6992–6998 (2013)CrossRef
26.
Zurück zum Zitat H.J. Kim, S.M. Suh, S.S. Rao, D. Punnoose, C.V. Tulasivarma, C. Gopi, N. Kundakarla, S. Ravi, I.K. Durga, Investigation on novel CuS/NiS composite counter electrode for hindering charge recombination in quantum dot sensitized solar cells. Electroanal. Chem. 777, 123–132 (2016)CrossRef H.J. Kim, S.M. Suh, S.S. Rao, D. Punnoose, C.V. Tulasivarma, C. Gopi, N. Kundakarla, S. Ravi, I.K. Durga, Investigation on novel CuS/NiS composite counter electrode for hindering charge recombination in quantum dot sensitized solar cells. Electroanal. Chem. 777, 123–132 (2016)CrossRef
27.
Zurück zum Zitat Z.J. Xu, T. Li, Q. Liu, F.Y. Zhang, X.D. Hong, S.Y. Xie, C.X. Lin, X.Y. Liu, W.X. Guo, Controllable and large-scale fabrication of rectangular CuS network films for indium tin oxide-and Pt-free flexible dye-sensitized solar cells. Electrochim. Acta 179, 279–304 (2018) Z.J. Xu, T. Li, Q. Liu, F.Y. Zhang, X.D. Hong, S.Y. Xie, C.X. Lin, X.Y. Liu, W.X. Guo, Controllable and large-scale fabrication of rectangular CuS network films for indium tin oxide-and Pt-free flexible dye-sensitized solar cells. Electrochim. Acta 179, 279–304 (2018)
28.
Zurück zum Zitat X.J. Zhang, W.X. Guo, C.F. Pan, Transparent conducting oxide-free and Pt-free flexible dye-sensitized solar cells employing CuS-nanosheet networks as counter electrodes. J. Mater. Chem. A 4, 6569–6576 (2016)CrossRef X.J. Zhang, W.X. Guo, C.F. Pan, Transparent conducting oxide-free and Pt-free flexible dye-sensitized solar cells employing CuS-nanosheet networks as counter electrodes. J. Mater. Chem. A 4, 6569–6576 (2016)CrossRef
29.
Zurück zum Zitat Z.J. Xu, T. Li, F.Y. Zhang, X.D. Hong, S.Y. Xie, M.D. Ye, W.X. Guo, X.Y. Liu, Highly flexible, transparent and conducting CuS-nanosheet networks for flexible quantum-dot solar cells. Nanoscale 9, 3826–3833 (2017)CrossRef Z.J. Xu, T. Li, F.Y. Zhang, X.D. Hong, S.Y. Xie, M.D. Ye, W.X. Guo, X.Y. Liu, Highly flexible, transparent and conducting CuS-nanosheet networks for flexible quantum-dot solar cells. Nanoscale 9, 3826–3833 (2017)CrossRef
30.
Zurück zum Zitat W. Zheng, Y.N. Zhang, D. Wang, Q.M. Wang, Optimization of the CdS quantum dot sensitized solar cells with ZnS passivation layer. J. Mater. Sci.: Mater. Electron. 29, 14796–14802 (2018) W. Zheng, Y.N. Zhang, D. Wang, Q.M. Wang, Optimization of the CdS quantum dot sensitized solar cells with ZnS passivation layer. J. Mater. Sci.: Mater. Electron. 29, 14796–14802 (2018)
31.
Zurück zum Zitat H. Wu, X.Y. Wang, L.L. Jiang, C. Wu, Q.L. Zhao, X. Liu, B.A. Hu, L.H. Yi, The effects of electrolyte on the supercapacitive performance of activated calcium carbide derived carbon. J. Power Sources 226, 202–209 (2013)CrossRef H. Wu, X.Y. Wang, L.L. Jiang, C. Wu, Q.L. Zhao, X. Liu, B.A. Hu, L.H. Yi, The effects of electrolyte on the supercapacitive performance of activated calcium carbide derived carbon. J. Power Sources 226, 202–209 (2013)CrossRef
32.
Zurück zum Zitat Y. Li, C.L. Zhu, T. Lu, Z.P. Guo, D. Zhang, J. Ma, S.M. Zhu, Simple fabrication of a Fe2O3/carbon composite for use in a high-performance lithium ion battery. Carbon 52, 565–573 (2013)CrossRef Y. Li, C.L. Zhu, T. Lu, Z.P. Guo, D. Zhang, J. Ma, S.M. Zhu, Simple fabrication of a Fe2O3/carbon composite for use in a high-performance lithium ion battery. Carbon 52, 565–573 (2013)CrossRef
33.
Zurück zum Zitat Y.J. Yang, J.F. Zi, W.K. Li, Enzyme-free sensing of hydrogen peroxide and glucose at a CuS nanoflowers modified glassy carbon electrode. Electrochim. Acta 115, 126–130 (2014)CrossRef Y.J. Yang, J.F. Zi, W.K. Li, Enzyme-free sensing of hydrogen peroxide and glucose at a CuS nanoflowers modified glassy carbon electrode. Electrochim. Acta 115, 126–130 (2014)CrossRef
34.
Zurück zum Zitat Q. Wang, J.E. Moser, M. Gratzel, Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B 109, 14945–14953 (2005)CrossRef Q. Wang, J.E. Moser, M. Gratzel, Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B 109, 14945–14953 (2005)CrossRef
35.
Zurück zum Zitat C.D. Sunesh, C.V.V.M. Gopi, M.P.A. Muthalif, H.J. Kim, Y. Choe, Improving the efficiency of quantum-dot-sensitized solar cells by optimizing the growth time of the CuS counter electrode. Appl. Surf. Sci. 416, 446–453 (2017)CrossRef C.D. Sunesh, C.V.V.M. Gopi, M.P.A. Muthalif, H.J. Kim, Y. Choe, Improving the efficiency of quantum-dot-sensitized solar cells by optimizing the growth time of the CuS counter electrode. Appl. Surf. Sci. 416, 446–453 (2017)CrossRef
36.
Zurück zum Zitat S.Q. Fan, B. Fang, J.H. Kim, B. Jeong, C. Kim, J.S. Yu, J. Ko, Ordered multimodal porous carbon as highly efficient counter electrodes in dye-sensitized and quantum-dot solar cells. Langmuir 26, 13644–13649 (2010)CrossRef S.Q. Fan, B. Fang, J.H. Kim, B. Jeong, C. Kim, J.S. Yu, J. Ko, Ordered multimodal porous carbon as highly efficient counter electrodes in dye-sensitized and quantum-dot solar cells. Langmuir 26, 13644–13649 (2010)CrossRef
37.
Zurück zum Zitat C. Gopi, M. Venkata-Haritha, S.-K. Kim, H.-J. Kim, Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn–ZnSe shell structure with enhanced light absorption and recombination control. Nanoscale 7, 12552 (2015)CrossRef C. Gopi, M. Venkata-Haritha, S.-K. Kim, H.-J. Kim, Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn–ZnSe shell structure with enhanced light absorption and recombination control. Nanoscale 7, 12552 (2015)CrossRef
38.
Zurück zum Zitat S. Kumar, M. Nehra, A. Deep, D. Kedia, N. Dilbaghi, K.H. Kim, Quantum-sized nanomaterials for solar cell applications. Renew. Sustain. Energy Rev. 73, 821–839 (2017)CrossRef S. Kumar, M. Nehra, A. Deep, D. Kedia, N. Dilbaghi, K.H. Kim, Quantum-sized nanomaterials for solar cell applications. Renew. Sustain. Energy Rev. 73, 821–839 (2017)CrossRef
Metadaten
Titel
Effect of CuS nanocrystalline particles on counter electrodes of multi-wall carbon nanotubes for QDSCs
verfasst von
Yinan Zhang
Qiming Wang
Di Wang
Wei Zheng
Publikationsdatum
27.11.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 2/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-0443-9

Weitere Artikel der Ausgabe 2/2019

Journal of Materials Science: Materials in Electronics 2/2019 Zur Ausgabe