Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 5/2022

15.01.2022 | Technical Article

Effect of Environment on Fatigue Crack Growth Behavior of Type 316 LN Stainless Steel and its Weldments

verfasst von: A. Poonguzhali, M. Nani Babu, S. Ravi, S. Ningshen, G. Amarendra

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Corrosion fatigue crack growth (CFCG) behavior of type 316LN stainless steel (SS) and its weldments are studied in acidified 5M NaCl + 0.15M Na2SO4 + 2.5 ml/l HCl medium under open circuit condition at a stress ratio (R) of 0.5 (R = ΔKmin/ΔKmax) and at a frequency (η) of 0.1 Hz for different stress intensity factor range (ΔK). At a value of ΔK corresponding to stress intensity factor for stress corrosion cracking (KISCC = 27.5 MPa.m0.5), the Paris region deviates from linearity as the crack growth/cycle increases dramatically for the base and weld metal indicating Type B behavior of an environmentally assisted cracking process. CFCG rate is compared with fatigue crack growth (FCG) rate at room temperature (RT) and at 450°C (HT). Type 316N weld metal (WM) showed lower threshold (ΔKth) values and higher crack growth rates (CGRs) than type 316LN SS. Cracking initiated in the transgranular (TG) mode for both the metallurgical conditions. Besides TG cracking of the austenite, dissolution of delta-ferrite (δ-Fe) was observed in the weld metal.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K.S. Kang, Heavy Components Replacement in Nuclear Power Plants: Guidelines and Experiences, Press. Vessels Pip. Conf., 2010, 49262, p 229–235. K.S. Kang, Heavy Components Replacement in Nuclear Power Plants: Guidelines and Experiences, Press. Vessels Pip. Conf., 2010, 49262, p 229–235.
2.
Zurück zum Zitat J.W. Simmons, Overview: High-Nitrogen Alloying of Stainless Steels, Mater. Sci. Eng., 1996, 207, p 159–169.CrossRef J.W. Simmons, Overview: High-Nitrogen Alloying of Stainless Steels, Mater. Sci. Eng., 1996, 207, p 159–169.CrossRef
3.
Zurück zum Zitat D. Du, J. Wang, K. Chen, L. Zhang and P.L. Andresen, Environmentally Assisted Cracking of Forged 316LN Stainless Steel and Its Weld in High Temperature Water, Corros. Sci., 2019, 147, p 69–80.CrossRef D. Du, J. Wang, K. Chen, L. Zhang and P.L. Andresen, Environmentally Assisted Cracking of Forged 316LN Stainless Steel and Its Weld in High Temperature Water, Corros. Sci., 2019, 147, p 69–80.CrossRef
4.
Zurück zum Zitat Z. Zhang, J. Tan, X. Wu, E.H. Han, W. Ke and J. Rao, Effects of Temperature on Corrosion Fatigue Behavior of 316LN Stainless Steel in High-Temperature Pressurized Water, Corros. Sci., 2019, 146, p 80–89.CrossRef Z. Zhang, J. Tan, X. Wu, E.H. Han, W. Ke and J. Rao, Effects of Temperature on Corrosion Fatigue Behavior of 316LN Stainless Steel in High-Temperature Pressurized Water, Corros. Sci., 2019, 146, p 80–89.CrossRef
5.
Zurück zum Zitat M.O. Speidel and R.M. Pedrazzoli, High nitrogen stainless steels in chloride solutions, Mater. Perfm., 1992, 31(9), p 59–61. M.O. Speidel and R.M. Pedrazzoli, High nitrogen stainless steels in chloride solutions, Mater. Perfm., 1992, 31(9), p 59–61.
6.
Zurück zum Zitat R.F.A. Jargelius-Pettersson, Electrochemical Investigation of the Influence of Nitrogen Alloying on Pitting Corrosion of Austenitic Stainless Steels, Corros. Sci., 1999, 41, p 1639–1664.CrossRef R.F.A. Jargelius-Pettersson, Electrochemical Investigation of the Influence of Nitrogen Alloying on Pitting Corrosion of Austenitic Stainless Steels, Corros. Sci., 1999, 41, p 1639–1664.CrossRef
7.
Zurück zum Zitat A. Poonguzhali, M.G. Pujar and U.K. Mudali, Effect of Nitrogen and Sensitization on the Microstructure and Pitting Corrosion Behavior of AISI type 316LN Stainless Steels, J Mater. Eng. Perform., 2013, 22, p 1170–1178.CrossRef A. Poonguzhali, M.G. Pujar and U.K. Mudali, Effect of Nitrogen and Sensitization on the Microstructure and Pitting Corrosion Behavior of AISI type 316LN Stainless Steels, J Mater. Eng. Perform., 2013, 22, p 1170–1178.CrossRef
8.
Zurück zum Zitat A.S. Vanini, J.P. Audouard and P. Marcus, The Role of Nitrogen in the Passivity of Austenitic Stainless Steels, Corros. Sci., 1994, 36, p 1825–1834.CrossRef A.S. Vanini, J.P. Audouard and P. Marcus, The Role of Nitrogen in the Passivity of Austenitic Stainless Steels, Corros. Sci., 1994, 36, p 1825–1834.CrossRef
9.
Zurück zum Zitat R.D. Willenbruch, C.R. Clayton, M. Oversluizen, D. Kim and Y. Lu, An XPS and Electrochemical Study of the Influence of Molybdenum and Nitrogen on the Passivity of Austenitic Stainless Steel, Corros. Sci., 1990, 31, p 179–190.CrossRef R.D. Willenbruch, C.R. Clayton, M. Oversluizen, D. Kim and Y. Lu, An XPS and Electrochemical Study of the Influence of Molybdenum and Nitrogen on the Passivity of Austenitic Stainless Steel, Corros. Sci., 1990, 31, p 179–190.CrossRef
10.
Zurück zum Zitat H. Ha and H. Kwon, Effects of Cr2N on the Pitting Corrosion of High Nitrogen Stainless Steels, Electrochim. Acta., 2007, 52, p 2175–2180.CrossRef H. Ha and H. Kwon, Effects of Cr2N on the Pitting Corrosion of High Nitrogen Stainless Steels, Electrochim. Acta., 2007, 52, p 2175–2180.CrossRef
11.
Zurück zum Zitat D. Féron, Nuclear Corrosion Science and Engineering, Woodhead Publishing, Philadelphia, 2012.CrossRef D. Féron, Nuclear Corrosion Science and Engineering, Woodhead Publishing, Philadelphia, 2012.CrossRef
12.
Zurück zum Zitat T.R. Allen and J.T. Busby, Radiation Damage Concerns for Extended Light Water Reactor Service, Jom., 2009, 61, p 29–34.CrossRef T.R. Allen and J.T. Busby, Radiation Damage Concerns for Extended Light Water Reactor Service, Jom., 2009, 61, p 29–34.CrossRef
13.
Zurück zum Zitat A.F. Liu, Mechanics and Mechanisms of Fracture: An Introduction, ASM International, USA, 2005.CrossRef A.F. Liu, Mechanics and Mechanisms of Fracture: An Introduction, ASM International, USA, 2005.CrossRef
14.
Zurück zum Zitat P. Paris and F. Erdogan, A Critical Analysis of Crack Propagation Laws, J. Basic. Eng., 1963, 85, p 528–534.CrossRef P. Paris and F. Erdogan, A Critical Analysis of Crack Propagation Laws, J. Basic. Eng., 1963, 85, p 528–534.CrossRef
15.
Zurück zum Zitat P.C. Paris, A Rational Analytic Theory of Fatigue, The trend in Eng., 1961, 13, p 9–14. P.C. Paris, A Rational Analytic Theory of Fatigue, The trend in Eng., 1961, 13, p 9–14.
16.
Zurück zum Zitat A. Poonguzhali, S. Ningshen and G. Amarendra, Corrosion Fatigue Crack Initiation of Type 316N Weldment Under the Influence of Cyclic Stress Amplitude, Met. Mater. Int., 2020, 26, p 1545–1554.CrossRef A. Poonguzhali, S. Ningshen and G. Amarendra, Corrosion Fatigue Crack Initiation of Type 316N Weldment Under the Influence of Cyclic Stress Amplitude, Met. Mater. Int., 2020, 26, p 1545–1554.CrossRef
17.
Zurück zum Zitat H. Shaikh, A. Poonguzhali, N. Sivaibharasi, R.K. Dayal and H.S. Khatak, Corrosion Fatigue of AISI Type 316LN Stainless Steel and its Weld Metal, Corros., 2009, 65, p 37–48.CrossRef H. Shaikh, A. Poonguzhali, N. Sivaibharasi, R.K. Dayal and H.S. Khatak, Corrosion Fatigue of AISI Type 316LN Stainless Steel and its Weld Metal, Corros., 2009, 65, p 37–48.CrossRef
18.
Zurück zum Zitat Test Method for Evaluating Stress corrosion cracking resistance of metals and alloys in a boiling magnesium chloride solution. G 36-94(2006), Annual Book of ASTM Standards, 2018, p 1-29. Test Method for Evaluating Stress corrosion cracking resistance of metals and alloys in a boiling magnesium chloride solution. G 36-94(2006), Annual Book of ASTM Standards, 2018, p 1-29.
19.
Zurück zum Zitat Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials. E 399, Annual Book of ASTM Standards, ASTM, 1997, p 413-443. Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials. E 399, Annual Book of ASTM Standards, ASTM, 1997, p 413-443.
20.
Zurück zum Zitat Test Method for Measurement of Fatigue Crack Growth Rates. E 647, Annual Book of ASTM Standards, 2015, p 1-49. Test Method for Measurement of Fatigue Crack Growth Rates. E 647, Annual Book of ASTM Standards, 2015, p 1-49.
21.
Zurück zum Zitat S.J. Hudak Jr., Small Crack Behavior and the Prediction of Fatigue Life, J Eng. Mater. Technol. Trans., 1981, 103, p 26–35.CrossRef S.J. Hudak Jr., Small Crack Behavior and the Prediction of Fatigue Life, J Eng. Mater. Technol. Trans., 1981, 103, p 26–35.CrossRef
22.
Zurück zum Zitat R.O. Ritchie and S. Suresh, Some Considerations on Fatigue Crack Closure at Near-Threshold Stress Intensities due to Fracture Surface Morphology, Metall. Trans. A, 1982, 13, p 937–940.CrossRef R.O. Ritchie and S. Suresh, Some Considerations on Fatigue Crack Closure at Near-Threshold Stress Intensities due to Fracture Surface Morphology, Metall. Trans. A, 1982, 13, p 937–940.CrossRef
23.
Zurück zum Zitat S. Suresh, Fatigue of Materials, Cambridge University Press, Cambridge, 1998.CrossRef S. Suresh, Fatigue of Materials, Cambridge University Press, Cambridge, 1998.CrossRef
24.
Zurück zum Zitat J. Petit, C and Sarrazin-Baudoux, Some Critical Aspects of Low Rate Fatigue Crack Propagation in Metallic Materials, Int. J. Fatigue., 2010, 32, p 962–970.CrossRef J. Petit, C and Sarrazin-Baudoux, Some Critical Aspects of Low Rate Fatigue Crack Propagation in Metallic Materials, Int. J. Fatigue., 2010, 32, p 962–970.CrossRef
26.
Zurück zum Zitat K.G. Samuel, G. Sasikala and S.K. Ray, On R Ratio Dependence of Threshold Stress Intensity Factor Range for Fatigue Crack Growth in Type 316 (N) Stainless Steel Weld, Mater. Sci. Technol., 2011, 27, p 371–376.CrossRef K.G. Samuel, G. Sasikala and S.K. Ray, On R Ratio Dependence of Threshold Stress Intensity Factor Range for Fatigue Crack Growth in Type 316 (N) Stainless Steel Weld, Mater. Sci. Technol., 2011, 27, p 371–376.CrossRef
27.
Zurück zum Zitat H. Shaikh, T. Anita, R.K. Dayal and H.S. Khatak, Effect of Metallurgical Variables on the Stress Corrosion Crack Growth Behaviour of AISI Type 316LN Stainless Steel, Corros. Sci., 2010, 52, p 1146–1154.CrossRef H. Shaikh, T. Anita, R.K. Dayal and H.S. Khatak, Effect of Metallurgical Variables on the Stress Corrosion Crack Growth Behaviour of AISI Type 316LN Stainless Steel, Corros. Sci., 2010, 52, p 1146–1154.CrossRef
28.
Zurück zum Zitat H.R. Baker, M.C. Bloom, R.N. Bolster and C.R. Singleterry, Film and pH Effects in the Stress Corrosion Cracking of Type 304 Stainless Steel, Corros., 1970, 26, p 420–426.CrossRef H.R. Baker, M.C. Bloom, R.N. Bolster and C.R. Singleterry, Film and pH Effects in the Stress Corrosion Cracking of Type 304 Stainless Steel, Corros., 1970, 26, p 420–426.CrossRef
29.
Zurück zum Zitat F. Menan and G. Henaff, Synergistic Action of Fatigue and Corrosion During Crack Growth in the 2024 Aluminium Alloy, Proc. Eng., 2010, 2, p 1441–1450.CrossRef F. Menan and G. Henaff, Synergistic Action of Fatigue and Corrosion During Crack Growth in the 2024 Aluminium Alloy, Proc. Eng., 2010, 2, p 1441–1450.CrossRef
30.
Zurück zum Zitat K.S. Chan, Roles of Microstructure in Fatigue Crack Initiation, Int. J. Fatigue., 2010, 32, p 1428–1447.CrossRef K.S. Chan, Roles of Microstructure in Fatigue Crack Initiation, Int. J. Fatigue., 2010, 32, p 1428–1447.CrossRef
32.
Zurück zum Zitat J. Petit, G. Henaff and C. Sarrazin-Baudoux, Environmentally Assisted Fatigue in the Gaseous Atmosphere, Compr. Struct. Integr., 2003, 6, p 211–280.CrossRef J. Petit, G. Henaff and C. Sarrazin-Baudoux, Environmentally Assisted Fatigue in the Gaseous Atmosphere, Compr. Struct. Integr., 2003, 6, p 211–280.CrossRef
33.
Zurück zum Zitat V.D. Vijayanand, K. Laha, P. Parameswaran, V. Ganesan and M.D. Mathew, Microstructural evolution during creep of 316LN stainless steel multi-pass weld joints, Mater. Sci. Eng. A, 2014, 607, p 138–144.CrossRef V.D. Vijayanand, K. Laha, P. Parameswaran, V. Ganesan and M.D. Mathew, Microstructural evolution during creep of 316LN stainless steel multi-pass weld joints, Mater. Sci. Eng. A, 2014, 607, p 138–144.CrossRef
34.
Zurück zum Zitat C.K. Lin and I.L. Lan, Fatigue Behavior of AISI 347 Stainless Steel in Various Environments, J. Mater. Sci., 2004, 39, p 6901–6908.CrossRef C.K. Lin and I.L. Lan, Fatigue Behavior of AISI 347 Stainless Steel in Various Environments, J. Mater. Sci., 2004, 39, p 6901–6908.CrossRef
35.
Zurück zum Zitat R.P. Wei and G. Shim, Fracture mechanics and corrosion fatigue, Corrosion Fatigue: Mechanics, Metallurgy, Electrochemistry, and Engineering. T.W. Crooker, B.N. Leis Ed., . ASTM STP 801. Philadelphia, 1983, p 5–25CrossRef R.P. Wei and G. Shim, Fracture mechanics and corrosion fatigue, Corrosion Fatigue: Mechanics, Metallurgy, Electrochemistry, and Engineering. T.W. Crooker, B.N. Leis Ed., . ASTM STP 801. Philadelphia, 1983, p 5–25CrossRef
36.
Zurück zum Zitat K. Makhlouf and J.W. Jones, Effects of Temperature and Frequency on Fatigue Crack Growth in 18% Cr Ferritic Stainless Steel, Int. J. Fatigue., 1993, 15, p 163–171.CrossRef K. Makhlouf and J.W. Jones, Effects of Temperature and Frequency on Fatigue Crack Growth in 18% Cr Ferritic Stainless Steel, Int. J. Fatigue., 1993, 15, p 163–171.CrossRef
37.
Zurück zum Zitat H. Shaikh, G. George, H.S. Khatak, F. Schneider and K. Mummert, Stress Corrosion Crack Growth Studies on Nitrogen Added AISI type 316 Stainless Steel and its Weld Metal in Boiling Acidified Sodium Chloride Solution Using the Fracture Mechanics Approach, Mater. Corros., 2000, 51, p 719–727.CrossRef H. Shaikh, G. George, H.S. Khatak, F. Schneider and K. Mummert, Stress Corrosion Crack Growth Studies on Nitrogen Added AISI type 316 Stainless Steel and its Weld Metal in Boiling Acidified Sodium Chloride Solution Using the Fracture Mechanics Approach, Mater. Corros., 2000, 51, p 719–727.CrossRef
38.
Zurück zum Zitat G. Sasikala, M. Nani Babu, B. Shashank Dutt and S. Venugopal, Characterisation of Fatigue Crack Growth and Fracture Behaviour of SS 316L (N) Base and Weld Materials, Adv. Mater. Res., 2013, 794, p 449–459.CrossRef G. Sasikala, M. Nani Babu, B. Shashank Dutt and S. Venugopal, Characterisation of Fatigue Crack Growth and Fracture Behaviour of SS 316L (N) Base and Weld Materials, Adv. Mater. Res., 2013, 794, p 449–459.CrossRef
39.
Zurück zum Zitat T.P.S. Gill, U.K. Mudali, V. Seetharaman and J.B. Gnanamoorthy, Effect of Heat Input and Microstructure on Pitting Corrosion in AISI 316L Submerged Arc Welds, Corros., 1988, 44, p 511–516.CrossRef T.P.S. Gill, U.K. Mudali, V. Seetharaman and J.B. Gnanamoorthy, Effect of Heat Input and Microstructure on Pitting Corrosion in AISI 316L Submerged Arc Welds, Corros., 1988, 44, p 511–516.CrossRef
40.
Zurück zum Zitat M.G. Pujar, R.K. Dayal, T.P.S. Gill and S.N. Malhotra, Evaluation of Microstructure and Electrochemical Corrosion Behavior of Austenitic 316 Stainless Steel Weld Metals with Varying Chemical Compositions, J. Mater. Eng. Perform., 2005, 14, p 327–342.CrossRef M.G. Pujar, R.K. Dayal, T.P.S. Gill and S.N. Malhotra, Evaluation of Microstructure and Electrochemical Corrosion Behavior of Austenitic 316 Stainless Steel Weld Metals with Varying Chemical Compositions, J. Mater. Eng. Perform., 2005, 14, p 327–342.CrossRef
41.
Zurück zum Zitat L. Dong, Q. Peng, Z. Zhang, T. Shoji, E.H. Han, W. Ke and L. Wang, Effect of Dissolved Hydrogen on Corrosion of 316NG Stainless Steel in High Temperature Water, Nucl. Eng. Des., 2015, 295, p 403–414.CrossRef L. Dong, Q. Peng, Z. Zhang, T. Shoji, E.H. Han, W. Ke and L. Wang, Effect of Dissolved Hydrogen on Corrosion of 316NG Stainless Steel in High Temperature Water, Nucl. Eng. Des., 2015, 295, p 403–414.CrossRef
42.
Zurück zum Zitat K. Mukahiwa, F. Scenini, M.G. Burke, N. Platts, D.R. Tice and J.W. Stairmand, Corrosion Fatigue and Microstructural Characterisation of Type 316 Austenitic Stainless Steels Tested in PWR Primary Water, Corros. Sci., 2018, 131, p 57–70.CrossRef K. Mukahiwa, F. Scenini, M.G. Burke, N. Platts, D.R. Tice and J.W. Stairmand, Corrosion Fatigue and Microstructural Characterisation of Type 316 Austenitic Stainless Steels Tested in PWR Primary Water, Corros. Sci., 2018, 131, p 57–70.CrossRef
43.
Zurück zum Zitat R. Soulas, M. Cheynet, E. Rauch, T. Neisius, L. Legras, C. Domain and Y. Brechet, TEM Investigations of the Oxide Layers Formed on a 316L Alloy in Simulated PWR Environment, J. Mater. Sci., 2013, 48, p 2861–2871.CrossRef R. Soulas, M. Cheynet, E. Rauch, T. Neisius, L. Legras, C. Domain and Y. Brechet, TEM Investigations of the Oxide Layers Formed on a 316L Alloy in Simulated PWR Environment, J. Mater. Sci., 2013, 48, p 2861–2871.CrossRef
44.
Zurück zum Zitat W.A. Baeslack, W.F. Savage and D.J. Duquette, Effect of Strain Rate on Stress Corrosion Cracking in Duplex type 304 Stainless Steel Weld Metal, Metall. Trans. A., 1979, 10, p 1429–1435.CrossRef W.A. Baeslack, W.F. Savage and D.J. Duquette, Effect of Strain Rate on Stress Corrosion Cracking in Duplex type 304 Stainless Steel Weld Metal, Metall. Trans. A., 1979, 10, p 1429–1435.CrossRef
45.
Zurück zum Zitat A. Poonguzhali, M.G. Pujar, C. Mallika and U. Kamachi Mudali, Characterisation of Microstructural Damage Due to Corrosion Fatigue in AISI type 316 LN Stainless Steels with Different Nitrogen Contents, Corros. Eng. Sci. Tech., 2016, 51, p 408–415.CrossRef A. Poonguzhali, M.G. Pujar, C. Mallika and U. Kamachi Mudali, Characterisation of Microstructural Damage Due to Corrosion Fatigue in AISI type 316 LN Stainless Steels with Different Nitrogen Contents, Corros. Eng. Sci. Tech., 2016, 51, p 408–415.CrossRef
46.
Zurück zum Zitat J. Man, M. Valtr, M. Petrenec, J. Dluhoš, I. Kuběna, K. Obrtlik and J. Polak, AFM and SEM-FEG Study on Fundamental Mechanisms Leading to Fatigue Crack Initiation, Int. J. Fatig., 2015, 76, p 11–18.CrossRef J. Man, M. Valtr, M. Petrenec, J. Dluhoš, I. Kuběna, K. Obrtlik and J. Polak, AFM and SEM-FEG Study on Fundamental Mechanisms Leading to Fatigue Crack Initiation, Int. J. Fatig., 2015, 76, p 11–18.CrossRef
Metadaten
Titel
Effect of Environment on Fatigue Crack Growth Behavior of Type 316 LN Stainless Steel and its Weldments
verfasst von
A. Poonguzhali
M. Nani Babu
S. Ravi
S. Ningshen
G. Amarendra
Publikationsdatum
15.01.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 5/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06496-4

Weitere Artikel der Ausgabe 5/2022

Journal of Materials Engineering and Performance 5/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.