Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 21/2020

23.09.2020

Effect of halide-mixing on tolerance factor and charge-carrier dynamics in (CH 3 NH 3 PbBr 3x Cl x ) perovskites powders

verfasst von: Zumaira Siddique, Julia L. Payne, John T. S. Irvine, Lethy K. Jagadamma, Zareen Akhter, Ifor D. W. Samuel, Azhar Iqbal

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 21/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work demonstrates a route to making mixed halide perovskite powders at room temperature by the anti-solvent-assisted crystallization method. Although, mixed halide CH3NH3PbBr3−xClx perovskites have been prepared by different methods, however, to the best of our knowledge the anti-solvent-assisted crystallization method is employed here for the first time to prepare mixed halide CH3NH3PbBr3−xClx perovskite powders. Solution-processed methyl ammonium lead tribromide CH3NH3PbBr3 (x = 0) and different amounts of chloride (Cl) containing mixed halide perovskites (CH3NH3PbBr3−xClx) were prepared for compositions of x = 0.5, 1, 1.25, 1.75. It reveals that bulk CH3NH3PbBr3−xClx samples are highly crystalline and exists in pure single cubic phase with an increased tolerance factor as compared to pure CH3NH3PbBr3. The CH3NH3PbBr3 perovskite has space-group Pm-3 m and a cell parameter of 5.930 Å (volume = 206 Å). The synthesis route adopted here gives access to hybrid perovskites powders with high Cl content and hence enables the band gap to be precisely tuned over a range from 2.26 to 2.49 eV. The powder samples display the subtle shifts in the emission spectra and the photoluminescence kinetics exhibits a decrease in average lifetime by increasing the Cl contents due to the presence of trap states in the structures that encourage non-radiative recombination of charge carrier. Conventionally, the CH3NH3PbBr3-based inverted solar cell architecture is prepared via mixing of the CH3NH3Br and PbBr2 precursors. In contrast, herein, the precursor solutions are directly prepared from the CH3NH3PbBr3 powder and the active layer of the inverted perovskite solar cells are then spin coated using this solution. The high Voc value of the fabricated solar cells potentially makes it a promising candidate for tandem photovoltaic, photocatalytic water splitting, and semi-transparent photovoltaic applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat H. Huang, F. Zhao, L. Liu, F. Zhang, X.G. Wu, L. Shi, B. Zou, Q. Pei, H. Zhong, Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots: an alternative route toward efficient light-emitting diodes. ACS Appl. Mater. Interfaces 7, 28128–28133 (2015) H. Huang, F. Zhao, L. Liu, F. Zhang, X.G. Wu, L. Shi, B. Zou, Q. Pei, H. Zhong, Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots: an alternative route toward efficient light-emitting diodes. ACS Appl. Mater. Interfaces 7, 28128–28133 (2015)
2.
Zurück zum Zitat K. Zheng, K. Zidek, M. Abdellah, M.E. Messing, M.J.A. Marri, T.N. Pullerits, Trap states and their dynamics in organometal halide perovskite nanoparticles and bulk crystals. J. Phys. Chem. C 120, 3077–3084 (2016) K. Zheng, K. Zidek, M. Abdellah, M.E. Messing, M.J.A. Marri, T.N. Pullerits, Trap states and their dynamics in organometal halide perovskite nanoparticles and bulk crystals. J. Phys. Chem. C 120, 3077–3084 (2016)
3.
Zurück zum Zitat D.M. Jang, K. Park, D.H. Kim, J. Park, F. Shojaei, H.S. Kang, J.P. Ahn, J.W. Lee, J.K. Song, Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning. Nano Lett. 15, 5191–5199 (2015) D.M. Jang, K. Park, D.H. Kim, J. Park, F. Shojaei, H.S. Kang, J.P. Ahn, J.W. Lee, J.K. Song, Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning. Nano Lett. 15, 5191–5199 (2015)
4.
Zurück zum Zitat A. Mojiri, R. Taylor, E. Thomsen, G. Rosengarten, Spectral beam splitting for efficient conversion of solar energy-A review. Renew. Sust. Energy Rev. 28, 654–663 (2013) A. Mojiri, R. Taylor, E. Thomsen, G. Rosengarten, Spectral beam splitting for efficient conversion of solar energy-A review. Renew. Sust. Energy Rev. 28, 654–663 (2013)
5.
Zurück zum Zitat N. Kedem, T.M. Brenner, M. Kulbak, N. Schaefer, S. Levcenko, I. Levine, D.A. Ras, G. Hodes, D. Cahen, Light-induced increase of electron diffusion length in a p–n junction type CH3NH3PbBr3 perovskite solar cell. J. Phys. Chem. Lett. 6, 2469–2476 (2015) N. Kedem, T.M. Brenner, M. Kulbak, N. Schaefer, S. Levcenko, I. Levine, D.A. Ras, G. Hodes, D. Cahen, Light-induced increase of electron diffusion length in a p–n junction type CH3NH3PbBr3 perovskite solar cell. J. Phys. Chem. Lett. 6, 2469–2476 (2015)
6.
Zurück zum Zitat S. Harisingh, S. Ramakrishnan, M. Kulbak, I. Levine, D. Cahen, B.E. Cohen, L. Etgar, M. Asscher, CsPbBr3 and CH3NH3PbBr3 promote visible-light photo-reactivity. Phys. Chem. Chem. Phys. 20, 16847–16852 (2018) S. Harisingh, S. Ramakrishnan, M. Kulbak, I. Levine, D. Cahen, B.E. Cohen, L. Etgar, M. Asscher, CsPbBr3 and CH3NH3PbBr3 promote visible-light photo-reactivity. Phys. Chem. Chem. Phys. 20, 16847–16852 (2018)
7.
Zurück zum Zitat T. Kinoshita, K. Nonomura, N.J. Jeon, F. Giordano, A. Abate, S. Uchida, T. Kubo, S.I. Seok, M.K. Nazeeruddin, A. Hagfeldt, Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells. Nat. Commun. 6, 8834/1-8 (2015) T. Kinoshita, K. Nonomura, N.J. Jeon, F. Giordano, A. Abate, S. Uchida, T. Kubo, S.I. Seok, M.K. Nazeeruddin, A. Hagfeldt, Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells. Nat. Commun. 6, 8834/1-8 (2015)
8.
Zurück zum Zitat A. Zohar, M. Kulbak, I. Levine, G. Hodes, A. Kahn, D. Cahen, What limits the open-circuit voltage of bromide perovskite-based solar cells? ACS Energy Lett. 4, 1–7 (2018) A. Zohar, M. Kulbak, I. Levine, G. Hodes, A. Kahn, D. Cahen, What limits the open-circuit voltage of bromide perovskite-based solar cells? ACS Energy Lett. 4, 1–7 (2018)
9.
Zurück zum Zitat O. Vybornyi, S. Yakunin, M.V. Kovalenko, Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals. Nanoscale 8, 6278–6283 (2016) O. Vybornyi, S. Yakunin, M.V. Kovalenko, Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals. Nanoscale 8, 6278–6283 (2016)
10.
Zurück zum Zitat M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P.C. Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1853–2160 (2016) M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P.C. Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1853–2160 (2016)
11.
Zurück zum Zitat J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T.B. Song, C.C. Chen, S. Lu, Y. Liu, H. Zhou, Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8, 1674–1680 (2014) J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T.B. Song, C.C. Chen, S. Lu, Y. Liu, H. Zhou, Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8, 1674–1680 (2014)
12.
Zurück zum Zitat A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible- light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009) A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible- light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)
13.
Zurück zum Zitat K.A. Bush, A.F. Palmstrom, Z.J. Yu, M. Boccard, R. Cheacharoen, J.P. Mailoa, D.P. McMeekin, R.L.Z. Hoye, C.D. Bailie, T. Leijtens, I.M. Peters, M.C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H.J. Snaith, T. Buonassisi, Z.C. Holman, S.F. Bent, M.D. McGehee, 23.6%-Efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009–17026 (2017) K.A. Bush, A.F. Palmstrom, Z.J. Yu, M. Boccard, R. Cheacharoen, J.P. Mailoa, D.P. McMeekin, R.L.Z. Hoye, C.D. Bailie, T. Leijtens, I.M. Peters, M.C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H.J. Snaith, T. Buonassisi, Z.C. Holman, S.F. Bent, M.D. McGehee, 23.6%-Efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009–17026 (2017)
14.
Zurück zum Zitat W. Xiang, Z. Wang, D.J. Kubicki, W. Tress, J. Luo, D. Prochowicz, S. Akin, L. Emsley, J. Zhou, G. Dietler, Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells. Joule 3, 205–214 (2018) W. Xiang, Z. Wang, D.J. Kubicki, W. Tress, J. Luo, D. Prochowicz, S. Akin, L. Emsley, J. Zhou, G. Dietler, Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells. Joule 3, 205–214 (2018)
15.
Zurück zum Zitat N.G. Park, Research direction toward scalable, stable, and high efficiency perovskite solar cells. Adv. Energy Mater. 10, 1903106/1-14 (2020) N.G. Park, Research direction toward scalable, stable, and high efficiency perovskite solar cells. Adv. Energy Mater. 10, 1903106/1-14 (2020)
16.
Zurück zum Zitat S. Chen, L. Lei, S. Yang, Y. Liu, Z.S. Wang, Characterization of perovskite obtained from two-step deposition on mesoporous titania. ACS Appl. Mater. Interfaces 7, 25770–25776 (2015) S. Chen, L. Lei, S. Yang, Y. Liu, Z.S. Wang, Characterization of perovskite obtained from two-step deposition on mesoporous titania. ACS Appl. Mater. Interfaces 7, 25770–25776 (2015)
17.
Zurück zum Zitat N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014) N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014)
18.
Zurück zum Zitat N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015) N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015)
19.
Zurück zum Zitat M. Alsari, O. Bikondoa, J. Bishop, M.A. Jalebi, L.Y. Ozer, M. Hampton, P. Thompson, M.T. Hörantner, S. Mahesh, C. Greenland, In situ simultaneous photovoltaic and structural evolution of perovskite solar cells during film formation. Energ. Environ. Sci. 11, 383–393 (2018) M. Alsari, O. Bikondoa, J. Bishop, M.A. Jalebi, L.Y. Ozer, M. Hampton, P. Thompson, M.T. Hörantner, S. Mahesh, C. Greenland, In situ simultaneous photovoltaic and structural evolution of perovskite solar cells during film formation. Energ. Environ. Sci. 11, 383–393 (2018)
20.
Zurück zum Zitat J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013) J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)
21.
Zurück zum Zitat S.S. Mali, C.S. Shim, C.K. Hong, Highly stable and efficient solid-state solar cells based on methylammonium lead bromide (CH3NH3PbBr3) perovskite quantum dots. NPG Asia Mater. 7, 86–95 (2015) S.S. Mali, C.S. Shim, C.K. Hong, Highly stable and efficient solid-state solar cells based on methylammonium lead bromide (CH3NH3PbBr3) perovskite quantum dots. NPG Asia Mater. 7, 86–95 (2015)
22.
Zurück zum Zitat J. Avila, C. Momblona, P.P. Boix, M. Sessolo, H.J. Bolink, Vapor-deposited perovskites: the route to high-performance solar cell production. Joule 1, 431–442 (2017) J. Avila, C. Momblona, P.P. Boix, M. Sessolo, H.J. Bolink, Vapor-deposited perovskites: the route to high-performance solar cell production. Joule 1, 431–442 (2017)
23.
Zurück zum Zitat X. Cao, L. Zhi, Y. Jia, Y. Li, X. Cui, K. Zhao, L. Ci, K. Ding, J. Wei, High annealing temperature induced rapid grain coarsening for efficient perovskite solar cells. J. Colloid Interface Sci. 524, 483–489 (2018) X. Cao, L. Zhi, Y. Jia, Y. Li, X. Cui, K. Zhao, L. Ci, K. Ding, J. Wei, High annealing temperature induced rapid grain coarsening for efficient perovskite solar cells. J. Colloid Interface Sci. 524, 483–489 (2018)
24.
Zurück zum Zitat F. Fang, J. Chen, G. Wu, H. Chen, Highly efficient perovskite solar cells fabricated by simplified one-step deposition method with non-halogenated anti-solvents. Org. Electron. 59, 330–336 (2018) F. Fang, J. Chen, G. Wu, H. Chen, Highly efficient perovskite solar cells fabricated by simplified one-step deposition method with non-halogenated anti-solvents. Org. Electron. 59, 330–336 (2018)
25.
Zurück zum Zitat C. Lan, H. Lan, G. Liang, J. Zhao, H. Peng, B. Fan, Z. Zheng, H. Sun, J. Luo, P. Fan, Simultaneous formation of CH3NH3PbI3 and electron transport layers using antisolvent method for efficient perovskite solar cells. Thin Solid Films 660, 75–81 (2018) C. Lan, H. Lan, G. Liang, J. Zhao, H. Peng, B. Fan, Z. Zheng, H. Sun, J. Luo, P. Fan, Simultaneous formation of CH3NH3PbI3 and electron transport layers using antisolvent method for efficient perovskite solar cells. Thin Solid Films 660, 75–81 (2018)
26.
Zurück zum Zitat J.W. Lee, N.G. Park, Two-step deposition method for high-efficiency perovskite solar cells. MRS Bull. 40, 654–659 (2015) J.W. Lee, N.G. Park, Two-step deposition method for high-efficiency perovskite solar cells. MRS Bull. 40, 654–659 (2015)
27.
Zurück zum Zitat Y. Tidhar, E. Edri, H. Weissman, D. Zohar, G. Hodes, D. Cahen, B. Rybtchinski, S. Kirmayer, Crystallization of methyl ammonium lead halide perovskites: implications for photovoltaic applications. J. Am. Chem. Soc. 136, 13249–13256 (2014) Y. Tidhar, E. Edri, H. Weissman, D. Zohar, G. Hodes, D. Cahen, B. Rybtchinski, S. Kirmayer, Crystallization of methyl ammonium lead halide perovskites: implications for photovoltaic applications. J. Am. Chem. Soc. 136, 13249–13256 (2014)
28.
Zurück zum Zitat X. Zheng, B. Chen, C. Wu, S. Priya, Room temperature fabrication of CH3NH3PbBr3 by anti- solvent assisted crystallization approach for perovskite solar cells with fast response and small J-V hysteresis. Nano Energy 17, 269–278 (2015) X. Zheng, B. Chen, C. Wu, S. Priya, Room temperature fabrication of CH3NH3PbBr3 by anti- solvent assisted crystallization approach for perovskite solar cells with fast response and small J-V hysteresis. Nano Energy 17, 269–278 (2015)
29.
Zurück zum Zitat Y.C. Choi, S.W. Lee, D.H. Kim, Antisolvent-assisted powder engineering for controlled growth of hybrid CH3NH3PbI3 perovskite thin films. APL Mater.5, 026101/1-6(2017) Y.C. Choi, S.W. Lee, D.H. Kim, Antisolvent-assisted powder engineering for controlled growth of hybrid CH3NH3PbI3 perovskite thin films. APL Mater.5, 026101/1-6(2017)
30.
Zurück zum Zitat N.K. Kumawat, A. Dey, A. Kumar, S.P. Gopinathan, K. Narasimhan, D. Kabra, Band gap tuning of CH3NH3Pb(Br1–xClx)3 Hybrid perovskite for blue electroluminescence. ACS Appl. Mater. Interfaces 7, 13119–13124 (2015) N.K. Kumawat, A. Dey, A. Kumar, S.P. Gopinathan, K. Narasimhan, D. Kabra, Band gap tuning of CH3NH3Pb(Br1–xClx)3 Hybrid perovskite for blue electroluminescence. ACS Appl. Mater. Interfaces 7, 13119–13124 (2015)
31.
Zurück zum Zitat T. Zhang, M. Yang, E.E. Benson, Z. Li, J. van de Lagemaat, J.M. Luther, Y. Yan, K. Zhu, Y. Zhao, A facile solvothermal growth of single crystal mixed halide perovskite CH3NH3Pb(Br1−xClx)3. Chem. Commun. 51, 7820–7823 (2015) T. Zhang, M. Yang, E.E. Benson, Z. Li, J. van de Lagemaat, J.M. Luther, Y. Yan, K. Zhu, Y. Zhao, A facile solvothermal growth of single crystal mixed halide perovskite CH3NH3Pb(Br1−xClx)3. Chem. Commun. 51, 7820–7823 (2015)
32.
Zurück zum Zitat S. Saeed, J. Yin, M.A. Khalid, P.A. Channar, G. Shabir, A. Saeed, M.A. Nadeem, C. Soci, A. Iqbal, Photoresponsive azobenzene ligand as an efficient electron acceptor for luminous CdTe quantum dots. J. Photochem. Photobiol. A 375, 48–53 (2019) S. Saeed, J. Yin, M.A. Khalid, P.A. Channar, G. Shabir, A. Saeed, M.A. Nadeem, C. Soci, A. Iqbal, Photoresponsive azobenzene ligand as an efficient electron acceptor for luminous CdTe quantum dots. J. Photochem. Photobiol. A 375, 48–53 (2019)
33.
Zurück zum Zitat S. Saeed, P.A. Channar, F.A. Larik, A. Saeed, M.A. Nadeem, A. Iqbal, Charge/energy transfer dynamics in CuO quantum dots attached to photoresponsive azobenzene ligand. J. Photochem. Photobiol. A 371, 44–49 (2019) S. Saeed, P.A. Channar, F.A. Larik, A. Saeed, M.A. Nadeem, A. Iqbal, Charge/energy transfer dynamics in CuO quantum dots attached to photoresponsive azobenzene ligand. J. Photochem. Photobiol. A 371, 44–49 (2019)
34.
Zurück zum Zitat S.N. Manjunatha, Y.-X. Chu, M.-J. Jeng, L.-B. Chang, The characteristics of perovskite solar cells fabricated using DMF and DMSO/GBL solvents. J. Electron. Mater. 1, 1–6 (2020) S.N. Manjunatha, Y.-X. Chu, M.-J. Jeng, L.-B. Chang, The characteristics of perovskite solar cells fabricated using DMF and DMSO/GBL solvents. J. Electron. Mater. 1, 1–6 (2020)
35.
Zurück zum Zitat P-H. Huang, Y-H. Wang, J-C. Ke, C-J. Huang, The effect of solvents on the performance of CH3NH3PbI3 perovskite solar cells. Energies 10, 599/1-8 (2017) P-H. Huang, Y-H. Wang, J-C. Ke, C-J. Huang, The effect of solvents on the performance of CH3NH3PbI3 perovskite solar cells. Energies 10, 599/1-8 (2017)
36.
Zurück zum Zitat Y. Sun, J. Peng, Y. Chen, Y. Yao, Z. Liang, Triple-cation mixed-halide perovskites: towards efficient, annealing-free and air-stable solar cells enabled by Pb (SCN)2 additive. Sci. Rep. 7, 46193/1-7 (2017) Y. Sun, J. Peng, Y. Chen, Y. Yao, Z. Liang, Triple-cation mixed-halide perovskites: towards efficient, annealing-free and air-stable solar cells enabled by Pb (SCN)2 additive. Sci. Rep. 7, 46193/1-7 (2017)
37.
Zurück zum Zitat G.P. Nagabhushana, R. Shivaramaiah, A. Navrotsky, Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites. Proc. Natl. Acad. Sci. 113, 7717–7721 (2016) G.P. Nagabhushana, R. Shivaramaiah, A. Navrotsky, Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites. Proc. Natl. Acad. Sci. 113, 7717–7721 (2016)
38.
Zurück zum Zitat A.K. Jena, A. Kulkarni, T. Miyasaka, Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119, 3036–3103 (2019) A.K. Jena, A. Kulkarni, T. Miyasaka, Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119, 3036–3103 (2019)
39.
Zurück zum Zitat Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J.-J. Berry, K. Zhu, Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28, 284–292 (2016) Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J.-J. Berry, K. Zhu, Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28, 284–292 (2016)
40.
Zurück zum Zitat W. Peng, L. Wang, B. Murali, K.T. Ho, A. Bera, N. Cho, C.F. Kang, V.M. Burlakov, J. Pan, L. Sinatra, Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells. Adv. Mater. 28, 3383–3390 (2016) W. Peng, L. Wang, B. Murali, K.T. Ho, A. Bera, N. Cho, C.F. Kang, V.M. Burlakov, J. Pan, L. Sinatra, Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells. Adv. Mater. 28, 3383–3390 (2016)
41.
Zurück zum Zitat P. Pistor, T. Burwig, C. Brzuska, B. Weber, W. Franzel, Thermal stability and miscibility of co-evaporated methyl ammonium lead halide (MAPbX3, X= I, Br, Cl) thin films analysed by in situ X-ray diffraction. J. Mater. Chem. A 6, 11496–11506 (2018) P. Pistor, T. Burwig, C. Brzuska, B. Weber, W. Franzel, Thermal stability and miscibility of co-evaporated methyl ammonium lead halide (MAPbX3, X= I, Br, Cl) thin films analysed by in situ X-ray diffraction. J. Mater. Chem. A 6, 11496–11506 (2018)
42.
Zurück zum Zitat D. Priante, I. Dursun, M. Alias, D. Shi, V. Melnikov, T.K. Ng, O.F. Mohammed, O.M. Bakr, B.S. Ooi, The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites. Appl. Phys. Lett.106, 081902/1-4 (2015) D. Priante, I. Dursun, M. Alias, D. Shi, V. Melnikov, T.K. Ng, O.F. Mohammed, O.M. Bakr, B.S. Ooi, The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites. Appl. Phys. Lett.106, 081902/1-4 (2015)
43.
Zurück zum Zitat J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Letts. 13, 1764–1769 (2013) J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Letts. 13, 1764–1769 (2013)
44.
Zurück zum Zitat X. Fang, K. Zhang, Y. Li, L. Yao, Y. Zhang, Y. Wang, W. Zhai, L. Tao, H. Du, G. Ran, Effect of excess PbBr2 on photoluminescence spectra of CH3NH3PbBr3 perovskite particles at room temperature. Appl. Phys. Lett. 108, 071109/1-4 (2016) X. Fang, K. Zhang, Y. Li, L. Yao, Y. Zhang, Y. Wang, W. Zhai, L. Tao, H. Du, G. Ran, Effect of excess PbBr2 on photoluminescence spectra of CH3NH3PbBr3 perovskite particles at room temperature. Appl. Phys. Lett. 108, 071109/1-4 (2016)
45.
Zurück zum Zitat M. Yang, D.H. Kim, Y. Yu, Z. Li, O.G. Reid, Z. Song, D. Zhao, C. Wang, L. Li, Y. Meng, Effect of non-stoichiometric solution chemistry on improving the performance of wide-bandgap perovskite solar cells. Mater. Today Energy 7, 232–238 (2018) M. Yang, D.H. Kim, Y. Yu, Z. Li, O.G. Reid, Z. Song, D. Zhao, C. Wang, L. Li, Y. Meng, Effect of non-stoichiometric solution chemistry on improving the performance of wide-bandgap perovskite solar cells. Mater. Today Energy 7, 232–238 (2018)
46.
Zurück zum Zitat C. Fei, B. Li, R. Zhang, H. Fu, J. Tian, G. Cao, Highly efficient and stable perovskite solar cells based on monolithically grained CH3NH3PbI3 film. Adv. Energy Mater. 7, 1602017/1-10 (2017) C. Fei, B. Li, R. Zhang, H. Fu, J. Tian, G. Cao, Highly efficient and stable perovskite solar cells based on monolithically grained CH3NH3PbI3 film. Adv. Energy Mater. 7, 1602017/1-10 (2017)
47.
Zurück zum Zitat D.H. Kim, J. Park, Z. Li, M. Yang, J‐S. Park, I. J. Park, J. Y. Kim, J. J. Berry, G. Rumbles, K. Zhu, 300% enhancement of carrier mobility in uniaxial‐oriented perovskite films formed by topotactic‐oriented attachment. Adv. Mater. 29, 1606831/1-8 (2017) D.H. Kim, J. Park, Z. Li, M. Yang, J‐S. Park, I. J. Park, J. Y. Kim, J. J. Berry, G. Rumbles, K. Zhu, 300% enhancement of carrier mobility in uniaxial‐oriented perovskite films formed by topotactic‐oriented attachment. Adv. Mater. 29, 1606831/1-8 (2017)
48.
Zurück zum Zitat A. Mancini, P. Quadrelli, C. Milanese, M. Patrini, G. Guizzetti, L. Malavasi, CH3NH3SnxPb1–xBr3 hybrid perovskite solid solution: synthesis, structure, and optical properties. Inorg. Chem. 54, 8893–8895 (2015) A. Mancini, P. Quadrelli, C. Milanese, M. Patrini, G. Guizzetti, L. Malavasi, CH3NH3SnxPb1–xBr3 hybrid perovskite solid solution: synthesis, structure, and optical properties. Inorg. Chem. 54, 8893–8895 (2015)
49.
Zurück zum Zitat M. Zhang, H. Yu, M. Lyu, Q. Wang, J.H. Yun, L. Wang, Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr3–x Clx films. Chem. Commun. 50, 11727–11730 (2014) M. Zhang, H. Yu, M. Lyu, Q. Wang, J.H. Yun, L. Wang, Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr3–x Clx films. Chem. Commun. 50, 11727–11730 (2014)
50.
Zurück zum Zitat M.B. Johnston, L.M. Herz, Hybrid perovskites for photovoltaics: charge-carrier recombination, diffusion, and radiative efficiencies. Acc. Chem. Res. 49, 146–154 (2016) M.B. Johnston, L.M. Herz, Hybrid perovskites for photovoltaics: charge-carrier recombination, diffusion, and radiative efficiencies. Acc. Chem. Res. 49, 146–154 (2016)
51.
Zurück zum Zitat S. Saeed, A. Iqbal, A. Iqbal, Photoinduced charge carrier dynamics in a ZnSe quantum dot- attached CdTe system. Proc. R. Soc. A 476, 20190616/1-13 (2020) S. Saeed, A. Iqbal, A. Iqbal, Photoinduced charge carrier dynamics in a ZnSe quantum dot- attached CdTe system. Proc. R. Soc. A 476, 20190616/1-13 (2020)
52.
Zurück zum Zitat J. Hao, H. Hao, J. Li, L. Shi, T. Zhong, C. Zhang, J. Dong, J. Xing, H. Liu, Z. Zhang, Light trapping effect in perovskite solar cells by the addition of Ag nanoparticles, using textured substrates. Nanomater. 8, 815/1-12 (2018) J. Hao, H. Hao, J. Li, L. Shi, T. Zhong, C. Zhang, J. Dong, J. Xing, H. Liu, Z. Zhang, Light trapping effect in perovskite solar cells by the addition of Ag nanoparticles, using textured substrates. Nanomater. 8, 815/1-12 (2018)
53.
Zurück zum Zitat J.W. Lee, Z. Dai, T.H. Han, C. Choi, S.Y. Chang, S.J. Lee, N. De Marco, H. Zhao, P. Sun, Y. Huang, 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nat. Commun.9, 3021/1-10(2018) J.W. Lee, Z. Dai, T.H. Han, C. Choi, S.Y. Chang, S.J. Lee, N. De Marco, H. Zhao, P. Sun, Y. Huang, 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nat. Commun.9, 3021/1-10(2018)
54.
Zurück zum Zitat M.I. Saidaminov, M.A. Haque, J. Almutlaq, S. Sarmah, X.H. Miao, R. Begum, A.A. Zhumekenov, I. Dursun, N. Cho, B. Murali, Inorganic lead halide perovskite single crystals: phase-selective low-temperature growth, carrier transport properties, and self-powered photodetection. Adv. Opt. Mater. 5, 1600704–1600711 (2017) M.I. Saidaminov, M.A. Haque, J. Almutlaq, S. Sarmah, X.H. Miao, R. Begum, A.A. Zhumekenov, I. Dursun, N. Cho, B. Murali, Inorganic lead halide perovskite single crystals: phase-selective low-temperature growth, carrier transport properties, and self-powered photodetection. Adv. Opt. Mater. 5, 1600704–1600711 (2017)
55.
Zurück zum Zitat J. Deng, J. Xun, R. He, Facile and rapid synthesis of high performance perovskite nanocrystals CsPb (X/Br)3 (X= Cl, I) at room temperature. Opt. Mater. 99, 109528/1-6 (2020) J. Deng, J. Xun, R. He, Facile and rapid synthesis of high performance perovskite nanocrystals CsPb (X/Br)3 (X= Cl, I) at room temperature. Opt. Mater. 99, 109528/1-6 (2020)
56.
Zurück zum Zitat Z. Yuan, Y. Shu, Y. Xin, B. Ma, Highly luminescent nanoscale quasi-2D layered lead bromide perovskites with tunable emissions. Chem. Commun. 52, 3887–3890 (2016) Z. Yuan, Y. Shu, Y. Xin, B. Ma, Highly luminescent nanoscale quasi-2D layered lead bromide perovskites with tunable emissions. Chem. Commun. 52, 3887–3890 (2016)
57.
Zurück zum Zitat A. Dualeh, P. Gao, S.I. Seok, M.K. Nazeeruddin, M. Graatzel, Thermal behavior of methylammonium lead-trihalide perovskite photovoltaic light harvesters. Chem. Mater. 26, 6160–6164 (2014) A. Dualeh, P. Gao, S.I. Seok, M.K. Nazeeruddin, M. Graatzel, Thermal behavior of methylammonium lead-trihalide perovskite photovoltaic light harvesters. Chem. Mater. 26, 6160–6164 (2014)
58.
Zurück zum Zitat H. Mehdi, A. Mhamdi, R. Hannachi, A. Bouazizi, MAPbBr3 perovskite solar cells via a two- step deposition process. RSC Adv. 9, 12906–12912 (2019) H. Mehdi, A. Mhamdi, R. Hannachi, A. Bouazizi, MAPbBr3 perovskite solar cells via a two- step deposition process. RSC Adv. 9, 12906–12912 (2019)
59.
Zurück zum Zitat T.D. McFarlane, C.S.D. Castro, P.J. Holliman, M.L. Davies, Improving the light harvesting and colour range of methyl ammonium lead tri-bromide (MAPbBr3) perovskite solar cells through co-sensitisation with organic dyes. Chem. Commun. 55, 35–38 (2019) T.D. McFarlane, C.S.D. Castro, P.J. Holliman, M.L. Davies, Improving the light harvesting and colour range of methyl ammonium lead tri-bromide (MAPbBr3) perovskite solar cells through co-sensitisation with organic dyes. Chem. Commun. 55, 35–38 (2019)
60.
Zurück zum Zitat X. Hu, X.F. Jiang, X. Xing, L. Nian, X. Liu, R. Huang, K. Wang, H.L. Yip, G. Zhou, Wide‐bandgap perovskite solar cells with large open‐circuit voltage of 1653 mv through interfacial engineering. Solar RRL 2, 1800083/1-10 (2018) X. Hu, X.F. Jiang, X. Xing, L. Nian, X. Liu, R. Huang, K. Wang, H.L. Yip, G. Zhou, Wide‐bandgap perovskite solar cells with large open‐circuit voltage of 1653 mv through interfacial engineering. Solar RRL 2, 1800083/1-10 (2018)
61.
Zurück zum Zitat T. Kokab, Z. Siddique, S. Hussain, A. Iqbal, Doped quaternary metal chalcogenides Cu2ZnSnS nanocrystals as efficient light harvesters for solar cell devices. J. Mater. Sci.: Mater. Electron. 30, 20860–20869 (2019) T. Kokab, Z. Siddique, S. Hussain, A. Iqbal, Doped quaternary metal chalcogenides Cu2ZnSnS nanocrystals as efficient light harvesters for solar cell devices. J. Mater. Sci.: Mater. Electron. 30, 20860–20869 (2019)
62.
Zurück zum Zitat H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014) H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014)
63.
Zurück zum Zitat K. Gao, Z. Zhu, B. Xu, S.B. Jo, Y. Kan, X. Peng, A. K‐Y. Jen, Highly efficient porphyrin‐based OPV/perovskite hybrid solar cells with extended photoresponse and high fill factor. Adv. Mater. 29, 1703980/1-8 (2017) K. Gao, Z. Zhu, B. Xu, S.B. Jo, Y. Kan, X. Peng, A. K‐Y. Jen, Highly efficient porphyrin‐based OPV/perovskite hybrid solar cells with extended photoresponse and high fill factor. Adv. Mater. 29, 1703980/1-8 (2017)
64.
Zurück zum Zitat K. Gao, J. Miao, L. Xiao, W. Deng, Y. Kan, T. Liang, C. Wang, F. Huang, J. Peng, Y. Cao, Multi-length-scale morphologies driven by mixed additives in porphyrin-based organic photovoltaics. Adv. Mater. 28, 4727–4733 (2016) K. Gao, J. Miao, L. Xiao, W. Deng, Y. Kan, T. Liang, C. Wang, F. Huang, J. Peng, Y. Cao, Multi-length-scale morphologies driven by mixed additives in porphyrin-based organic photovoltaics. Adv. Mater. 28, 4727–4733 (2016)
65.
Zurück zum Zitat K. Gao, Y. Kan, X. Chen, F. Liu, B. Kan, L. Nian, X. Wan, Y. Chen, X. Peng, T.P. Russell, Low‐bandgap porphyrins for highly efficient organic solar cells: materials, morphology, and applications. Adv. Mater. 32, 1906129/1-19 (2020) K. Gao, Y. Kan, X. Chen, F. Liu, B. Kan, L. Nian, X. Wan, Y. Chen, X. Peng, T.P. Russell, Low‐bandgap porphyrins for highly efficient organic solar cells: materials, morphology, and applications. Adv. Mater. 32, 1906129/1-19 (2020)
66.
Zurück zum Zitat K. Gao, S. B. Jo, X. Shi, L. Nian, M. Zhang,Y. Kan, F. Lin, B. Kan, B. Xu, Q. Rong, Over 12% efficiency nonfullerene all‐small‐molecule organic solar cells with sequentially evolved multilength scale morphologies. Adv. Mater. 31, 1807842/1-10 (2019) K. Gao, S. B. Jo, X. Shi, L. Nian, M. Zhang,Y. Kan, F. Lin, B. Kan, B. Xu, Q. Rong, Over 12% efficiency nonfullerene all‐small‐molecule organic solar cells with sequentially evolved multilength scale morphologies. Adv. Mater. 31, 1807842/1-10 (2019)
67.
Zurück zum Zitat D. Liu, C. Yang, R.R. Lunt, Halide perovskites for selective ultraviolet-harvesting transparent photovoltaics. Joule 2, 1827–1837 (2018) D. Liu, C. Yang, R.R. Lunt, Halide perovskites for selective ultraviolet-harvesting transparent photovoltaics. Joule 2, 1827–1837 (2018)
Metadaten
Titel
Effect of halide-mixing on tolerance factor and charge-carrier dynamics in (CH 3 NH 3 PbBr 3−x Cl x ) perovskites powders
verfasst von
Zumaira Siddique
Julia L. Payne
John T. S. Irvine
Lethy K. Jagadamma
Zareen Akhter
Ifor D. W. Samuel
Azhar Iqbal
Publikationsdatum
23.09.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 21/2020
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-04475-4

Weitere Artikel der Ausgabe 21/2020

Journal of Materials Science: Materials in Electronics 21/2020 Zur Ausgabe

Neuer Inhalt