Skip to main content
Erschienen in: Metal Science and Heat Treatment 11-12/2019

18.04.2019 | MAGNESIUM ALLOYS

Effect of Hot Rotary Swaging and Subsequent Annealing on Microstructure and Mechanical Properties of Magnesium Alloy WE43

verfasst von: Chang Wang, Zhentao Yu, Yajun Cui, Sen Yu, Xiqun Ma, Hanyuan Liu

Erschienen in: Metal Science and Heat Treatment | Ausgabe 11-12/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of hot rotary swaging and subsequent annealing on the microstructure and mechanical properties of magnesium alloy WE43 of the Mg – Y – Nd – Zr system is studied. The optimum temperature of rotary swaging providing refinement of the microstructure, change in the preferential grain orientation, strain hardening and growth in the strength is determined. It is shown that subsequent annealing at 400°C for 60 min raises the ductility, causes the appearance of equiaxed grains, and removes the strain hardening, which makes it possible to perform further deformation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Friedrich and S. Schumann, “Research for a “new age of magnesium” in the automotive industry,” J. Mater. Proc. Technol., 117(3), 276 – 281 (2001).CrossRef H. Friedrich and S. Schumann, “Research for a “new age of magnesium” in the automotive industry,” J. Mater. Proc. Technol., 117(3), 276 – 281 (2001).CrossRef
2.
Zurück zum Zitat B. L. Mordike and T. Ebert, “Magnesium: properties – applications – potential,” Mater. Sci. Eng. A, 302(1), 37 – 45 (2001).CrossRef B. L. Mordike and T. Ebert, “Magnesium: properties – applications – potential,” Mater. Sci. Eng. A, 302(1), 37 – 45 (2001).CrossRef
3.
Zurück zum Zitat K. Yu, W. Li, R. Wang, et al., “Effect of T5 and T6 tempers on a hot-rolled WE43 magnesium alloy,” Mater. Trans., 49(8), 1818 – 1821 (2008).CrossRef K. Yu, W. Li, R. Wang, et al., “Effect of T5 and T6 tempers on a hot-rolled WE43 magnesium alloy,” Mater. Trans., 49(8), 1818 – 1821 (2008).CrossRef
4.
Zurück zum Zitat N. Li, C. Guo, Y. H. Wu, et al., “Comparative study on corrosion behavior of pure Mg and WE43 alloy in static, stirring and flowing Hank’s solution,” Corr. Eng. Sci. Technol., 47(5), 346 – 351 (2012).CrossRef N. Li, C. Guo, Y. H. Wu, et al., “Comparative study on corrosion behavior of pure Mg and WE43 alloy in static, stirring and flowing Hank’s solution,” Corr. Eng. Sci. Technol., 47(5), 346 – 351 (2012).CrossRef
5.
Zurück zum Zitat R. Hebdzynski, S. Kajzer, and R. Kozik, “Forging on the four-lever arms swaging machines,” J. Mater. Proc. Technol., 64(1), 199 – 206 (1997).CrossRef R. Hebdzynski, S. Kajzer, and R. Kozik, “Forging on the four-lever arms swaging machines,” J. Mater. Proc. Technol., 64(1), 199 – 206 (1997).CrossRef
6.
Zurück zum Zitat M. A. Abdulstaar, E. A. El-Danaf, N. S. Waluyo e al., “Severe plastic deformation of commercial purity aluminum by rotary swaging: Microstructure evolution and mechanical properties,” Mater. Sci. Eng. A, 565(5), 351 – 358 (2013). M. A. Abdulstaar, E. A. El-Danaf, N. S. Waluyo e al., “Severe plastic deformation of commercial purity aluminum by rotary swaging: Microstructure evolution and mechanical properties,” Mater. Sci. Eng. A, 565(5), 351 – 358 (2013).
7.
Zurück zum Zitat M. Hermann, C. Schenk, and B. Kuhfuss, “Dry rotary swaging with structured tools,” Proc. Cirp., 40, 654 – 659 (2016).CrossRef M. Hermann, C. Schenk, and B. Kuhfuss, “Dry rotary swaging with structured tools,” Proc. Cirp., 40, 654 – 659 (2016).CrossRef
8.
Zurück zum Zitat L. Zong, Z. Nie, and T. Zuo, “3D finite element modeling of cogging-down rotary swaging of pure magnesium square billet — Revealing the effect of high-frequency pulse stroking,” Mater. Sci. Eng. A, 464(1 – 2), 28 – 37 (2007). L. Zong, Z. Nie, and T. Zuo, “3D finite element modeling of cogging-down rotary swaging of pure magnesium square billet — Revealing the effect of high-frequency pulse stroking,” Mater. Sci. Eng. A, 464(1 – 2), 28 – 37 (2007).
9.
Zurück zum Zitat J. Schrank, B. Ortner, H. P. Stuwe, et al., “Work softening and work hardening during rotary swaging of copper,” Mater. Sci. Technol., 1(7), 544 – 549 (1985).CrossRef J. Schrank, B. Ortner, H. P. Stuwe, et al., “Work softening and work hardening during rotary swaging of copper,” Mater. Sci. Technol., 1(7), 544 – 549 (1985).CrossRef
10.
Zurück zum Zitat L. Lu, D. Yuan, Y. Tang, et al., “Slave rotation analysis of miniature inner grooved copper tube through rotary swaging process,” Int. J. Adv. Manuf. Technol., 61(1), 185 – 193 (2012).CrossRef L. Lu, D. Yuan, Y. Tang, et al., “Slave rotation analysis of miniature inner grooved copper tube through rotary swaging process,” Int. J. Adv. Manuf. Technol., 61(1), 185 – 193 (2012).CrossRef
11.
Zurück zum Zitat Y. Li, T. He, and Z. Zheng, “Numerical simulation and experimental study on the tube sinking of a thin-walled copper tube with axially inner micro grooves by radial forging,” J. Mater. Proc. Technol., 213(6), 987 – 996 (2013).CrossRef Y. Li, T. He, and Z. Zheng, “Numerical simulation and experimental study on the tube sinking of a thin-walled copper tube with axially inner micro grooves by radial forging,” J. Mater. Proc. Technol., 213(6), 987 – 996 (2013).CrossRef
12.
Zurück zum Zitat H. Alkhazraji, E. El-Danaf, M. Wollmann, et al., “Enhanced fatigue strength of commercially pure Ti processed by rotary swaging,” Adv. Mater. Sci. Eng., 201(5), 1 – 2 (2015).CrossRef H. Alkhazraji, E. El-Danaf, M. Wollmann, et al., “Enhanced fatigue strength of commercially pure Ti processed by rotary swaging,” Adv. Mater. Sci. Eng., 201(5), 1 – 2 (2015).CrossRef
13.
Zurück zum Zitat M. A. Abdulstaar, E. A. El-Danaf, N. S. Waluyo, et al., “Severe plastic deformation of commercial purity aluminum by rotary swaging: Microstructure evolution and mechanical properties,” Mater. Sci. Eng. A, 565(5), 351 – 358 (2013).CrossRef M. A. Abdulstaar, E. A. El-Danaf, N. S. Waluyo, et al., “Severe plastic deformation of commercial purity aluminum by rotary swaging: Microstructure evolution and mechanical properties,” Mater. Sci. Eng. A, 565(5), 351 – 358 (2013).CrossRef
14.
Zurück zum Zitat H. Al-Khazraji, E. El-Danaf, M. Wollmann et al., “Microstructure, mechanical, and fatigue strength of Ti-54M processed by rotary swaging,” J. Mater. Eng. Perform., 24(5), 2074 – 2084 (2015).CrossRef H. Al-Khazraji, E. El-Danaf, M. Wollmann et al., “Microstructure, mechanical, and fatigue strength of Ti-54M processed by rotary swaging,” J. Mater. Eng. Perform., 24(5), 2074 – 2084 (2015).CrossRef
15.
Zurück zum Zitat R. Li, Z. R. Nie, and T. Y. Zuo, “FEA modeling of effect of axial feeding on strain field of rotary swaging process of pure magnesium,” Trans. Nonferr. Met. Soc. China, 16(5), 1015 – 1020 (2006).CrossRef R. Li, Z. R. Nie, and T. Y. Zuo, “FEA modeling of effect of axial feeding on strain field of rotary swaging process of pure magnesium,” Trans. Nonferr. Met. Soc. China, 16(5), 1015 – 1020 (2006).CrossRef
16.
Zurück zum Zitat R. Li, Z. R. Nie, and T. Y. Zuo, “Effects of reduction of diameter on microstructure and surface roughness of rotary swaged magnesium by FEA,” Trans. Nonferr. Met. Soc. China, 18(S1), 263 – 268 (2008). R. Li, Z. R. Nie, and T. Y. Zuo, “Effects of reduction of diameter on microstructure and surface roughness of rotary swaged magnesium by FEA,” Trans. Nonferr. Met. Soc. China, 18(S1), 263 – 268 (2008).
17.
Zurück zum Zitat W. M. Gan, Y. D. Huang, R. Wang, et al., “Microstructures and mechanical properties of pure Mg processed by rotary swaging,” Mater. Design, 63(21), 83 – 88 (2014).CrossRef W. M. Gan, Y. D. Huang, R. Wang, et al., “Microstructures and mechanical properties of pure Mg processed by rotary swaging,” Mater. Design, 63(21), 83 – 88 (2014).CrossRef
18.
Zurück zum Zitat T. Al-Samman and G. Gottstein, “Dynamic recrystallization during high-temperature deformation of magnesium,” Mater. Sci. Eng. A, 490, 411 – 420 (2008).CrossRef T. Al-Samman and G. Gottstein, “Dynamic recrystallization during high-temperature deformation of magnesium,” Mater. Sci. Eng. A, 490, 411 – 420 (2008).CrossRef
19.
Zurück zum Zitat T. Al-Samman, “Comparative study of the deformation behavior of hexagonal magnesium-lithium alloys and a conventional magnesium AZ31 alloy,” Acta Mater., 57(7), 2229 – 2242 (2009).CrossRef T. Al-Samman, “Comparative study of the deformation behavior of hexagonal magnesium-lithium alloys and a conventional magnesium AZ31 alloy,” Acta Mater., 57(7), 2229 – 2242 (2009).CrossRef
20.
Zurück zum Zitat S. Spigarelli, M. E. Mehtedi, M. Cabibbo, et al., “Analysis of high-temperature deformation and microstructure of an AZ31 magnesium alloy,” Mater. Sci. Eng. A., 462(1), 197 – 201 (2007).CrossRef S. Spigarelli, M. E. Mehtedi, M. Cabibbo, et al., “Analysis of high-temperature deformation and microstructure of an AZ31 magnesium alloy,” Mater. Sci. Eng. A., 462(1), 197 – 201 (2007).CrossRef
21.
Zurück zum Zitat G. W. Lorimer, L. W. Mackenzie, J. F. Humphreys, et al., “The recrystallization behavior of AZ31 and WE43,” Mater. Sci. Forum, 99 – 102 (2005). G. W. Lorimer, L. W. Mackenzie, J. F. Humphreys, et al., “The recrystallization behavior of AZ31 and WE43,” Mater. Sci. Forum, 99 – 102 (2005).
22.
Zurück zum Zitat Y. Lou, L. Li, J. Zhou, et al., “Deformation behavior of Mg – 8Al magnesium alloy compressed at medium and high temperatures,” Mater. Charact., 62(3), 346 – 353 (2011).CrossRef Y. Lou, L. Li, J. Zhou, et al., “Deformation behavior of Mg – 8Al magnesium alloy compressed at medium and high temperatures,” Mater. Charact., 62(3), 346 – 353 (2011).CrossRef
23.
Zurück zum Zitat L. Capolungo, “Dislocation junction formation and strength in magnesium,” Acta Mater., 59(8), 2909 – 2917 (2011).CrossRef L. Capolungo, “Dislocation junction formation and strength in magnesium,” Acta Mater., 59(8), 2909 – 2917 (2011).CrossRef
24.
Zurück zum Zitat Y. J. Qin, Q. L. Pan, Y. B. He, et al., “Modeling of flow stress for magnesium alloy during hot deformation,” Mater. Sci. Eng. A, 527(10 – 11), 2790 – 2797 (2010).CrossRef Y. J. Qin, Q. L. Pan, Y. B. He, et al., “Modeling of flow stress for magnesium alloy during hot deformation,” Mater. Sci. Eng. A, 527(10 – 11), 2790 – 2797 (2010).CrossRef
25.
Zurück zum Zitat J. A. D. Valle and O. A. Ruano, “Influence of texture on dynamic recrystallization and deformation mechanisms in rolled or ECAPed AZ31 magnesium alloy,” Mater. Sci. Eng. A, 487(1 – 2), 473 – 480 (2008).CrossRef J. A. D. Valle and O. A. Ruano, “Influence of texture on dynamic recrystallization and deformation mechanisms in rolled or ECAPed AZ31 magnesium alloy,” Mater. Sci. Eng. A, 487(1 – 2), 473 – 480 (2008).CrossRef
26.
Zurück zum Zitat Q. Wu, S. Zhu, L. Wang, et al., “The microstructure and properties of cyclic extrusion compression treated Mg – Zn – Y – Nd alloy for vascular stent application,” J. Mechan. Behav. Biomed. Mater., 8(2), 1 – 7 (2012).CrossRef Q. Wu, S. Zhu, L. Wang, et al., “The microstructure and properties of cyclic extrusion compression treated Mg – Zn – Y – Nd alloy for vascular stent application,” J. Mechan. Behav. Biomed. Mater., 8(2), 1 – 7 (2012).CrossRef
27.
Zurück zum Zitat E. Martin and J. J. Jonas, “Evolution of microstructure and microtexture during the hot deformation of Mg – 3% Al,” Acta Mater., 58(12), 4253 – 4266 (2010).CrossRef E. Martin and J. J. Jonas, “Evolution of microstructure and microtexture during the hot deformation of Mg – 3% Al,” Acta Mater., 58(12), 4253 – 4266 (2010).CrossRef
Metadaten
Titel
Effect of Hot Rotary Swaging and Subsequent Annealing on Microstructure and Mechanical Properties of Magnesium Alloy WE43
verfasst von
Chang Wang
Zhentao Yu
Yajun Cui
Sen Yu
Xiqun Ma
Hanyuan Liu
Publikationsdatum
18.04.2019
Verlag
Springer US
Erschienen in
Metal Science and Heat Treatment / Ausgabe 11-12/2019
Print ISSN: 0026-0673
Elektronische ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-019-00355-9

Weitere Artikel der Ausgabe 11-12/2019

Metal Science and Heat Treatment 11-12/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.