Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 5/2016

31.03.2016

Effect of Hybrid Surface Modifications on Tensile Properties of Polyacrylonitrile- and Pitch-Based Carbon Fibers

verfasst von: Kimiyoshi Naito

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 5/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recent interest has emerged in techniques that modify the surfaces of carbon fibers, such as carbon nanotube (CNT) grafting or polymer coating. Hybridization of these surface modifications has the potential to generate highly tunable, high-performance materials. In this study, the mechanical properties of surface-modified polyacrylonitrile (PAN)-based and pitch-based carbon fibers were investigated. Single-filament tensile tests were performed for fibers modified by CNT grafting, dipped polyimide coating, high-temperature vapor deposition polymerized polyimide coating, grafting-dipping hybridization, and grafting-vapor deposition hybridization. The Weibull statistical distributions of the tensile strengths of the surface-modified PAN- and pitch-based carbon fibers were examined. All surface modifications, especially hybrid modifications, improved the tensile strengths and Weibull moduli of the carbon fibers. The results exhibited a linear relationship between the Weibull modulus and average tensile strength on a log-log scale for all surface-modified PAN- and pitch-based carbon fibers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Several growth temperatures and times were examined for CNT deposition (e.g., 650, 700, 750, and 800 °C and 120, 300, 600, 900, 1200, and 1800 s). SEM micrographs showed that the quality of CNT deposition was similar for PAN- and pitch-based carbon fibers at the above growth conditions. Differences due to temperature were attributed to the differing thermal conductivities and surface morphologies of PAN- and pitch-based carbon fibers.
 
2
Similar results are also shown in Fig. 4(e).
 
3
This result is shown in Fig. 5(c).
 
4
Several data points for the as-received carbon fibers did not fall on the line (T1000GB in Fig. 7(a)) when the gage length was >100 mm because the Weibull modulus stabilized at a larger value of the gage length than that at which the average tensile strength stabilized. The results clearly show that when the gage length was <100 mm, the Weibull moduli and the average tensile strengths of both the PAN- and pitch-based carbon fibers increased with decreasing gage length, and linear relationships were observed between the Weibull moduli and the average tensile strengths of the as-received and CNT-grafted carbon fibers on a log-log scale.
 
Literatur
1.
Zurück zum Zitat S. Chand, Review-Carbon Fibers for Composites, J. Mater. Sci., 2000, 35(6), p 1303–1313CrossRef S. Chand, Review-Carbon Fibers for Composites, J. Mater. Sci., 2000, 35(6), p 1303–1313CrossRef
2.
Zurück zum Zitat K. Naito, Y. Tanaka, J.M. Yang, and Y. Kagawa, Tensile Properties of Ultrahigh Strength PAN-Based, Ultrahigh Modulus Pitch-Based and High Ductility Pitch-Based Carbon Fibers, Carbon, 2008, 46(2), p 189–195CrossRef K. Naito, Y. Tanaka, J.M. Yang, and Y. Kagawa, Tensile Properties of Ultrahigh Strength PAN-Based, Ultrahigh Modulus Pitch-Based and High Ductility Pitch-Based Carbon Fibers, Carbon, 2008, 46(2), p 189–195CrossRef
3.
Zurück zum Zitat K. Naito, Y. Tanaka, J.M. Yang, and Y. Kagawa, Flexural Properties of PAN- and Pitch-Based Carbon Fibers, J. Am. Ceram. Soc., 2009, 92(1), p 186–192CrossRef K. Naito, Y. Tanaka, J.M. Yang, and Y. Kagawa, Flexural Properties of PAN- and Pitch-Based Carbon Fibers, J. Am. Ceram. Soc., 2009, 92(1), p 186–192CrossRef
4.
Zurück zum Zitat T.D. Juska and P.M. Puckett, Matrix Resins and Fiber/Matrix Adhesion, Composites Engineering Handbook, P.K. Mallick, Ed., New York, Dekker, 1997, p 101–165 T.D. Juska and P.M. Puckett, Matrix Resins and Fiber/Matrix Adhesion, Composites Engineering Handbook, P.K. Mallick, Ed., New York, Dekker, 1997, p 101–165
5.
Zurück zum Zitat W.B. Downs and R.T.K. Baker, Novel Carbon Fiber-Carbon Filament Structures, Carbon, 1991, 29(8), p 1173–1179CrossRef W.B. Downs and R.T.K. Baker, Novel Carbon Fiber-Carbon Filament Structures, Carbon, 1991, 29(8), p 1173–1179CrossRef
6.
Zurück zum Zitat S. Zhu, C.H. Su, S.L. Lehoczky, I. Muntele, and D. Ila, Carbon Nanotube Growth on Carbon Fibers, Diam. Relat. Mater., 2003, 12(10–11), p 1825–1828CrossRef S. Zhu, C.H. Su, S.L. Lehoczky, I. Muntele, and D. Ila, Carbon Nanotube Growth on Carbon Fibers, Diam. Relat. Mater., 2003, 12(10–11), p 1825–1828CrossRef
7.
Zurück zum Zitat J.O. Zhao, L. Liu, Q.G. Guo, J.L. Shi, G.T. Zhai, J.R. Song, and Z.J. Liu, Growth of Carbon Nanotubes on the Surface of Carbon Fibers, Carbon, 2008, 46(2), p 380–383CrossRef J.O. Zhao, L. Liu, Q.G. Guo, J.L. Shi, G.T. Zhai, J.R. Song, and Z.J. Liu, Growth of Carbon Nanotubes on the Surface of Carbon Fibers, Carbon, 2008, 46(2), p 380–383CrossRef
8.
Zurück zum Zitat K. Naito, J.M. Yang, Y. Tanaka, and Y. Kagawa, Tensile Properties of Carbon Nanotubes Grown on Ultrahigh Strength Polyacrylonitrile-Based and Ultrahigh Modulus Pitch-Based Carbon Fibers, Appl. Phys. Lett., 2008, 92(23), p 231912-1-3CrossRef K. Naito, J.M. Yang, Y. Tanaka, and Y. Kagawa, Tensile Properties of Carbon Nanotubes Grown on Ultrahigh Strength Polyacrylonitrile-Based and Ultrahigh Modulus Pitch-Based Carbon Fibers, Appl. Phys. Lett., 2008, 92(23), p 231912-1-3CrossRef
9.
Zurück zum Zitat K. Naito, J.M. Yang, Y. Xu, and Y. Kagawa, Enhancing the Thermal Conductivity of Polyacrylonitrile- and Pitch-Based Carbon Fibers by Grafting Carbon Nanotubes on Them, Carbon, 2010, 48(6), p 1849–1857CrossRef K. Naito, J.M. Yang, Y. Xu, and Y. Kagawa, Enhancing the Thermal Conductivity of Polyacrylonitrile- and Pitch-Based Carbon Fibers by Grafting Carbon Nanotubes on Them, Carbon, 2010, 48(6), p 1849–1857CrossRef
10.
Zurück zum Zitat J.K. Kim and Y.W. Mai, Effects of Interfacial Coating and Temperature on the Fracture Behaviors of Unidirectional Kevlar and Carbon-Fiber Reinforced Epoxy-Resin Composites, J. Mater. Sci., 1991, 26(17), p 4702–4720CrossRef J.K. Kim and Y.W. Mai, Effects of Interfacial Coating and Temperature on the Fracture Behaviors of Unidirectional Kevlar and Carbon-Fiber Reinforced Epoxy-Resin Composites, J. Mater. Sci., 1991, 26(17), p 4702–4720CrossRef
11.
Zurück zum Zitat P.C. Varelidis, R.L. McCullough, and C.D. Papaspyrides, The Effect on the Mechanical Properties of Carbon/Epoxy Composites of Polyamide Coatings on the Fibers, Compos. Sci. Technol., 1999, 59(12), p 1813–1823CrossRef P.C. Varelidis, R.L. McCullough, and C.D. Papaspyrides, The Effect on the Mechanical Properties of Carbon/Epoxy Composites of Polyamide Coatings on the Fibers, Compos. Sci. Technol., 1999, 59(12), p 1813–1823CrossRef
12.
Zurück zum Zitat S. Dujardin, R. Lazzaroni, L. Rigo, J. Riga, and J.J. Verbist, Electrochemically Polymer-Coated Carbon-Fibers—Characterization and Potential for Composite Applications, J. Mater. Sci., 1986, 21(12), p 4342–4346CrossRef S. Dujardin, R. Lazzaroni, L. Rigo, J. Riga, and J.J. Verbist, Electrochemically Polymer-Coated Carbon-Fibers—Characterization and Potential for Composite Applications, J. Mater. Sci., 1986, 21(12), p 4342–4346CrossRef
13.
Zurück zum Zitat B. Zinger, S. Shkolnik, and H. Höcke, Electrocoating of Carbon-Fibers with Polyaniline and Poly(hydroxyalkyl methacrylates), Polymer, 1989, 30(4), p 628–635CrossRef B. Zinger, S. Shkolnik, and H. Höcke, Electrocoating of Carbon-Fibers with Polyaniline and Poly(hydroxyalkyl methacrylates), Polymer, 1989, 30(4), p 628–635CrossRef
14.
Zurück zum Zitat L.T. Drzal, Adhesion of Graphite Fibers to Epoxy Matrices 2. The Effect of Fiber Finish, J. Adhes., 1983, 16(2), p 133–152CrossRef L.T. Drzal, Adhesion of Graphite Fibers to Epoxy Matrices 2. The Effect of Fiber Finish, J. Adhes., 1983, 16(2), p 133–152CrossRef
15.
Zurück zum Zitat R.J. Dauksys, Graphite Fiber Treatments Which Affect Fiber Surface Morphology and Epoxy Bonding Characteristics, J. Adhes., 1973, 5(3), p 211–244CrossRef R.J. Dauksys, Graphite Fiber Treatments Which Affect Fiber Surface Morphology and Epoxy Bonding Characteristics, J. Adhes., 1973, 5(3), p 211–244CrossRef
16.
Zurück zum Zitat T. Naganuma, K. Naito, and J.M. Yang, High-Temperature Vapor Deposition Polymerization Polyimide Coating for Elimination of Surface Nano-Flaws in High-Strength Carbon Fiber, Carbon, 2011, 49(12), p 3881–3890CrossRef T. Naganuma, K. Naito, and J.M. Yang, High-Temperature Vapor Deposition Polymerization Polyimide Coating for Elimination of Surface Nano-Flaws in High-Strength Carbon Fiber, Carbon, 2011, 49(12), p 3881–3890CrossRef
17.
Zurück zum Zitat K. Naito, The Effect of High-Temperature Vapor Deposition Polymerization of Polyimide Coating on Tensile Properties of Polyacrylonitrile- and Pitch-Based Carbon Fibers, J. Mater. Sci., 2013, 48(17), p 6056–6064CrossRef K. Naito, The Effect of High-Temperature Vapor Deposition Polymerization of Polyimide Coating on Tensile Properties of Polyacrylonitrile- and Pitch-Based Carbon Fibers, J. Mater. Sci., 2013, 48(17), p 6056–6064CrossRef
18.
Zurück zum Zitat A.R. Bunsell and B. Harris, Hybrid Carbon and Glass Fibre Composites, Composites, 1974, 5(4), p 157–164CrossRef A.R. Bunsell and B. Harris, Hybrid Carbon and Glass Fibre Composites, Composites, 1974, 5(4), p 157–164CrossRef
19.
Zurück zum Zitat K.M. Hardaker and M.O.W. Richardson, Trends in Hybrid Composite Technology, Polym.-Plast. Technol., 1980, 15(2), p 169–182CrossRef K.M. Hardaker and M.O.W. Richardson, Trends in Hybrid Composite Technology, Polym.-Plast. Technol., 1980, 15(2), p 169–182CrossRef
20.
Zurück zum Zitat K. Naito, J.M. Yang, and Y. Kagawa, Tensile Properties of High Strength Polyacrylonitrile (PAN)-Based and High Modulus Pitch-Based Hybrid Carbon Fibers-Reinforced Epoxy Matrix Composite, J. Mater. Sci., 2012, 47(6), p 2743–2751CrossRef K. Naito, J.M. Yang, and Y. Kagawa, Tensile Properties of High Strength Polyacrylonitrile (PAN)-Based and High Modulus Pitch-Based Hybrid Carbon Fibers-Reinforced Epoxy Matrix Composite, J. Mater. Sci., 2012, 47(6), p 2743–2751CrossRef
21.
Zurück zum Zitat K. Naito, Tensile Properties of Polyacrylonitrile- and Pitch-Based Hybrid Carbon Fiber/Polyimide Composites with Some Nanoparticles in the Matrix, J. Mater. Sci., 2013, 48(12), p 4163–4176CrossRef K. Naito, Tensile Properties of Polyacrylonitrile- and Pitch-Based Hybrid Carbon Fiber/Polyimide Composites with Some Nanoparticles in the Matrix, J. Mater. Sci., 2013, 48(12), p 4163–4176CrossRef
22.
Zurück zum Zitat T. Naganuma, K. Naito, J.M. Yang, J. Kyono, D. Sasakura, and Y. Kagawa, The Effect of a Compliant Polyimide Nanocoating on the Tensile Properties of a High Strength PAN-Based Carbon Fiber, Compos. Sci. Technol., 2009, 69(7–8), p 1319–1322CrossRef T. Naganuma, K. Naito, J.M. Yang, J. Kyono, D. Sasakura, and Y. Kagawa, The Effect of a Compliant Polyimide Nanocoating on the Tensile Properties of a High Strength PAN-Based Carbon Fiber, Compos. Sci. Technol., 2009, 69(7–8), p 1319–1322CrossRef
23.
Zurück zum Zitat A. Kubono, H. Higuchi, S. Umemoto, and N. Okui, Direct Formation of Polyimide Thin Films by Vapor Deposition Polymerization, Thin Solid Films, 1993, 232(2), p 256–260CrossRef A. Kubono, H. Higuchi, S. Umemoto, and N. Okui, Direct Formation of Polyimide Thin Films by Vapor Deposition Polymerization, Thin Solid Films, 1993, 232(2), p 256–260CrossRef
24.
Zurück zum Zitat H. Hatori, Y. Yamada, M. Shiraishi, and Y. Takahashi, Carbonization and Graphitization of Polyimide Coating on Carbon-Fiber, Carbon, 1991, 29(4–5), p 679–680CrossRef H. Hatori, Y. Yamada, M. Shiraishi, and Y. Takahashi, Carbonization and Graphitization of Polyimide Coating on Carbon-Fiber, Carbon, 1991, 29(4–5), p 679–680CrossRef
25.
Zurück zum Zitat American Society for Testing and Materials, Standard Test Method for Tensile Strength and Young’s Modulus of Fibers, in ASTM C1557-03, ASTM Annual Book of Standards, Vol. 15.01. 2013, American Society for Testing and Materials, West Conshohocken, PA, 2013 American Society for Testing and Materials, Standard Test Method for Tensile Strength and Young’s Modulus of Fibers, in ASTM C1557-03, ASTM Annual Book of Standards, Vol. 15.01. 2013, American Society for Testing and Materials, West Conshohocken, PA, 2013
26.
Zurück zum Zitat M.G. Sung, K. Sassa, T. Tagawa, T. Miyata, H. Ogawa, M. Doyama, S. Yamada, and S. Asai, Application of a High Magnetic Field in the Carbonization Process to Increase the Strength of Carbon Fibers, Carbon, 2002, 40(11), p 2013–2020CrossRef M.G. Sung, K. Sassa, T. Tagawa, T. Miyata, H. Ogawa, M. Doyama, S. Yamada, and S. Asai, Application of a High Magnetic Field in the Carbonization Process to Increase the Strength of Carbon Fibers, Carbon, 2002, 40(11), p 2013–2020CrossRef
27.
Zurück zum Zitat W. Weibull, A Statistical Distribution Function of Wide Applicability, J. Appl. Mech., 1951, 18, p 293–297 W. Weibull, A Statistical Distribution Function of Wide Applicability, J. Appl. Mech., 1951, 18, p 293–297
28.
Zurück zum Zitat W. Johnson, The Structure of PAN Based Carbon Fibres and Relationship to Physical Properties, Strong Fibers, W. Watt and B.V. Perov, Eds., vol 1, Amsterdam, Elsevier, 1985, p 389–443 W. Johnson, The Structure of PAN Based Carbon Fibres and Relationship to Physical Properties, Strong Fibers, W. Watt and B.V. Perov, Eds., vol 1, Amsterdam, Elsevier, 1985, p 389–443
29.
Zurück zum Zitat K. Naito, J.M. Yang, Y. Tanaka, and Y. Kagawa, The Effect of Gauge Length on Tensile Strength and Weibull Modulus of Polyacrylonitrile (PAN)- and Pitch-Based Carbon Fibers, J. Mater. Sci., 2012, 47(2), p 632–642CrossRef K. Naito, J.M. Yang, Y. Tanaka, and Y. Kagawa, The Effect of Gauge Length on Tensile Strength and Weibull Modulus of Polyacrylonitrile (PAN)- and Pitch-Based Carbon Fibers, J. Mater. Sci., 2012, 47(2), p 632–642CrossRef
30.
Zurück zum Zitat K. Naito, J.M. Yang, Y. Inoue, and H. Fukuda, The Effect of Surface Modification with Carbon Nanotubes Upon the Tensile Strength and Weibull Modulus of Carbon Fibers, J. Mater. Sci., 2012, 47(23), p 8044–8051CrossRef K. Naito, J.M. Yang, Y. Inoue, and H. Fukuda, The Effect of Surface Modification with Carbon Nanotubes Upon the Tensile Strength and Weibull Modulus of Carbon Fibers, J. Mater. Sci., 2012, 47(23), p 8044–8051CrossRef
Metadaten
Titel
Effect of Hybrid Surface Modifications on Tensile Properties of Polyacrylonitrile- and Pitch-Based Carbon Fibers
verfasst von
Kimiyoshi Naito
Publikationsdatum
31.03.2016
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 5/2016
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2028-1

Weitere Artikel der Ausgabe 5/2016

Journal of Materials Engineering and Performance 5/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.