Skip to main content
Erschienen in: Journal of Iron and Steel Research International 5/2021

09.11.2020 | Original Paper

Effect of hydrogen addition on compression deformation behaviour of Ti–0.3Mo–0.8Ni alloy argon-arc welded joints

verfasst von: Zhao-hui Zhang, Quan-ming Liu, Li Fu, Hai-ying Yang, Shi-feng Liu

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 5/2021

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of hydrogen addition on compression deformation behaviour of Ti–0.3Mo–0.8Ni alloy argon-arc welded joint has been investigated. Evolution mechanism of hydrogen-induced flow stress was discussed in detail. The results show that with increasing hydrogen content, the stretching and bending extent of fully lamellar microstructures including α lamellas and acicular hydride continued to increase, the morphology of dynamic recrystallization (DRX) grains tended to change from approximately equiaxed to large lamellar shape, and the quantity of DRX grains and recrystallization degree of grains increased obviously. A large number of dislocations concentrated in the vicinity of the hydride. Steady stress was decreased continuously with increasing hydrogen content, while peak stress of the hydrogenated 0.12 wt.% H weld zone was decreased to the minimum value and then increased slowly. A slight decrease in flow stress of the hydrogenated 0.05 wt.% H weld zone was caused by limited increase in the volume fraction of softer β phase. Hydrogen-induced DRX of α phase and improved dislocation movement by strong interaction between the hydride and dislocation directly resulted in a sharp drop in flow stress of the hydrogenated 0.12 and 0.21 wt.% H weld zone. Solute hydrogen also finitely contributed to a sharp drop in flow stress of the hydrogenated 0.12 and 0.21 wt.% H weld zone by promoted local softening, which induced continuous DRX and more movable dislocations to participate in slipping or climbing. The reinforcement effect and plastic deformation of the hydride and solution strengthening of β phase induced by solute hydrogen finally led to the increase in flow stress of the hydrogenated 0.21 wt.% H weld zone in its true strain range from 0 to 0.36.
Literatur
[1]
Zurück zum Zitat A. Karolczuk, H. Paul, Z. Szulc, K. Kluger, M. Najwer, G. Kwiatkowski, J. Mater. Eng. Perform. 27 (2018) 4571–4581.CrossRef A. Karolczuk, H. Paul, Z. Szulc, K. Kluger, M. Najwer, G. Kwiatkowski, J. Mater. Eng. Perform. 27 (2018) 4571–4581.CrossRef
[2]
Zurück zum Zitat P. Sengupta, G. Sharma, G.K. Dey, J. Nucl. Mater. 457 (2015) 205–208.CrossRef P. Sengupta, G. Sharma, G.K. Dey, J. Nucl. Mater. 457 (2015) 205–208.CrossRef
[3]
Zurück zum Zitat G.C. Li, X. Cheng, X.J. Tian, J. Iron Steel Res. Int. 25 (2018) 442–452.CrossRef G.C. Li, X. Cheng, X.J. Tian, J. Iron Steel Res. Int. 25 (2018) 442–452.CrossRef
[4]
[5]
Zurück zum Zitat T.F. Song, X.S. Jiang, Z.Y. Shao, D.F. Mo, D.G. Zhu, M.H. Zhu, C.H. Young, Z.P. Luo, J. Iron Steel Res. Int. 24 (2017) 1023–1031.CrossRef T.F. Song, X.S. Jiang, Z.Y. Shao, D.F. Mo, D.G. Zhu, M.H. Zhu, C.H. Young, Z.P. Luo, J. Iron Steel Res. Int. 24 (2017) 1023–1031.CrossRef
[6]
Zurück zum Zitat R.R. Chen, T.F. Ma, J.J. Guo, H.S. Ding, Y.O. Su, H.Z. Fu, Mater. Des. 108 (2016) 259–268.CrossRef R.R. Chen, T.F. Ma, J.J. Guo, H.S. Ding, Y.O. Su, H.Z. Fu, Mater. Des. 108 (2016) 259–268.CrossRef
[7]
Zurück zum Zitat Y.Y. Zong, Y.C. Liang, Z.W. Yin, D.B. Shan, Int. J. Hydrogen Energy 37 (2012) 13631–13637.CrossRef Y.Y. Zong, Y.C. Liang, Z.W. Yin, D.B. Shan, Int. J. Hydrogen Energy 37 (2012) 13631–13637.CrossRef
[8]
[9]
Zurück zum Zitat J.W. Zhao, H. Ding, H.L. Hou, Z.Q. Li, J. Alloy. Compd. 491 (2010) 673–678.CrossRef J.W. Zhao, H. Ding, H.L. Hou, Z.Q. Li, J. Alloy. Compd. 491 (2010) 673–678.CrossRef
[10]
[11]
Zurück zum Zitat S.M.J. Babu, B.P. Kashyap, N. Prabhu, R. Kapoor, R.N. Singh, J.K. Chakravartty, Mater. Sci. Eng. A 679 (2017) 75–86.CrossRef S.M.J. Babu, B.P. Kashyap, N. Prabhu, R. Kapoor, R.N. Singh, J.K. Chakravartty, Mater. Sci. Eng. A 679 (2017) 75–86.CrossRef
[12]
Zurück zum Zitat Z.G. Sun, G.Q. Chen, Y.Q. Wang, W.L. Zhou, H.L. Hou, Mater. Sci. Eng. A 527 (2010) 1003–1007.CrossRef Z.G. Sun, G.Q. Chen, Y.Q. Wang, W.L. Zhou, H.L. Hou, Mater. Sci. Eng. A 527 (2010) 1003–1007.CrossRef
[13]
Zurück zum Zitat L. Zhou, D. Liu, H.J. Liu, L.Z. Wu, Appl. Mech. Mater. 395–396 (2013) 243–250.CrossRef L. Zhou, D. Liu, H.J. Liu, L.Z. Wu, Appl. Mech. Mater. 395–396 (2013) 243–250.CrossRef
[14]
Zurück zum Zitat S.P Liu, Z. Zhang, S.F. Xiao, Y.G. Chen, J. Alloy. Compd. 781 (2019) 1139–1149.CrossRef S.P Liu, Z. Zhang, S.F. Xiao, Y.G. Chen, J. Alloy. Compd. 781 (2019) 1139–1149.CrossRef
[15]
Zurück zum Zitat Y. Zhang, S.Q. Zhang, C. Tao, Int. J. Hydrogen Energy 22 (1997) 125–129.CrossRef Y. Zhang, S.Q. Zhang, C. Tao, Int. J. Hydrogen Energy 22 (1997) 125–129.CrossRef
[16]
Zurück zum Zitat X. Wang, L. Wang, L.S. Luo, H. Yan, X.Z. Li, R.R. Chen, Y.Q. Su, Y.J. Guo, H.Z. Fu, Mater. Des. 121 (2017) 335–344.CrossRef X. Wang, L. Wang, L.S. Luo, H. Yan, X.Z. Li, R.R. Chen, Y.Q. Su, Y.J. Guo, H.Z. Fu, Mater. Des. 121 (2017) 335–344.CrossRef
[17]
Zurück zum Zitat J.Q. Lu, J.N. Qin, W.J. Lu, Y.F. Chen, D. Zhang, H.L. Hou, Int. J. Hydrogen Energy 34 (2009) 9266–9273.CrossRef J.Q. Lu, J.N. Qin, W.J. Lu, Y.F. Chen, D. Zhang, H.L. Hou, Int. J. Hydrogen Energy 34 (2009) 9266–9273.CrossRef
[18]
Zurück zum Zitat X.J. Lin, F.Y. Dong, Y. Zhang, X.G. Yuan, H.J. Huang, B.W. Zheng, L.Wang, X. Wang, L.S. Luo, Y.Q. Su, Y.J. Xu, B.S. Han, Int. J. Hydrogen Energy 44 (2019) 8641–8649.CrossRef X.J. Lin, F.Y. Dong, Y. Zhang, X.G. Yuan, H.J. Huang, B.W. Zheng, L.Wang, X. Wang, L.S. Luo, Y.Q. Su, Y.J. Xu, B.S. Han, Int. J. Hydrogen Energy 44 (2019) 8641–8649.CrossRef
[19]
Zurück zum Zitat T.S. Balasubramanian, V. Balasubramanian, M.A. Muthu Manickam, Mater. Des. 32 (2011) 4509-4520.CrossRef T.S. Balasubramanian, V. Balasubramanian, M.A. Muthu Manickam, Mater. Des. 32 (2011) 4509-4520.CrossRef
[20]
Zurück zum Zitat J.H. Xiong, S.K. Li, F.Y. Gao, J.X. Zhang, Mater. Sci. Eng. A 640 (2015) 419–423.CrossRef J.H. Xiong, S.K. Li, F.Y. Gao, J.X. Zhang, Mater. Sci. Eng. A 640 (2015) 419–423.CrossRef
[21]
Zurück zum Zitat O.N. Senkov, F.H. Froes, Int. J. Hydrogen Energy 24 (1999) 565–576.CrossRef O.N. Senkov, F.H. Froes, Int. J. Hydrogen Energy 24 (1999) 565–576.CrossRef
[22]
Zurück zum Zitat H.F. Zhang, Research on high temperature deformation behaviors and application of BTi-62421S alloys, North University of China, Taiyuan, China, 2011. H.F. Zhang, Research on high temperature deformation behaviors and application of BTi-62421S alloys, North University of China, Taiyuan, China, 2011.
[23]
Zurück zum Zitat Q.M. Liu, Z.H. Zhang, S.F. Liu, H.Y. Yang, Adv. Eng. Mater. 20 (2018) 1700679.CrossRef Q.M. Liu, Z.H. Zhang, S.F. Liu, H.Y. Yang, Adv. Eng. Mater. 20 (2018) 1700679.CrossRef
[24]
Zurück zum Zitat Z.H. Zhang, Q.M. Liu, S.F. Liu, H.Y. Yang, Rare Metal Mater. Eng. 48 (2019) 0104–0110. Z.H. Zhang, Q.M. Liu, S.F. Liu, H.Y. Yang, Rare Metal Mater. Eng. 48 (2019) 0104–0110.
[25]
Zurück zum Zitat J. Zhao, J. Zhong, F. Yan, F. Chai, M. Dargusch, J. Alloy. Compd. 710 (2017) 616–627.CrossRef J. Zhao, J. Zhong, F. Yan, F. Chai, M. Dargusch, J. Alloy. Compd. 710 (2017) 616–627.CrossRef
[26]
Zurück zum Zitat K. Zhang, H.B. Wu, D. Tang, J. Iron Steel Res. Int. 19 (2012) No. 5, 58–62.CrossRef K. Zhang, H.B. Wu, D. Tang, J. Iron Steel Res. Int. 19 (2012) No. 5, 58–62.CrossRef
[27]
Zurück zum Zitat D.B. Shan, Y.Y. Zong, Y. Lv, B. Guo, Scripta Mater. 58 (2008) 449–452.CrossRef D.B. Shan, Y.Y. Zong, Y. Lv, B. Guo, Scripta Mater. 58 (2008) 449–452.CrossRef
[28]
Zurück zum Zitat Y.Y. Zong, D.S. Wen, W.C. Xu, D.M. Yang, D.B. Shan, Z.Y. Liu, Proced. Eng. 81 (2014) 1420–1426.CrossRef Y.Y. Zong, D.S. Wen, W.C. Xu, D.M. Yang, D.B. Shan, Z.Y. Liu, Proced. Eng. 81 (2014) 1420–1426.CrossRef
[29]
Zurück zum Zitat X.M. Zhang, Y.Q. Zhao, W.D. Zeng, Mater. Sci. Technol. 27 (2011) 214–218.CrossRef X.M. Zhang, Y.Q. Zhao, W.D. Zeng, Mater. Sci. Technol. 27 (2011) 214–218.CrossRef
[30]
Zurück zum Zitat O.N. Senkov, M. Dubois, J.J. Jonas, Metall. Mater. Trans. A 27 (1996) 3963–3970.CrossRef O.N. Senkov, M. Dubois, J.J. Jonas, Metall. Mater. Trans. A 27 (1996) 3963–3970.CrossRef
Metadaten
Titel
Effect of hydrogen addition on compression deformation behaviour of Ti–0.3Mo–0.8Ni alloy argon-arc welded joints
verfasst von
Zhao-hui Zhang
Quan-ming Liu
Li Fu
Hai-ying Yang
Shi-feng Liu
Publikationsdatum
09.11.2020
Verlag
Springer Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 5/2021
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-020-00509-7

Weitere Artikel der Ausgabe 5/2021

Journal of Iron and Steel Research International 5/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.