Skip to main content
Erschienen in: Polymer Bulletin 7/2019

19.10.2018 | Original Paper

Effect of lithium hexafluorophosphate LiPF6 and 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [Bmim][TFSI] immobilized in poly(2-hydroxyethyl methacrylate) PHEMA

verfasst von: N. I. B. Wafi, W. R. W. Daud, A. Ahmad, E. H. Majlan, M. R. Somalu

Erschienen in: Polymer Bulletin | Ausgabe 7/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A solid polymer electrolyte of poly(2-hydroxyethyl methacrylate) PHEMA and lithium hexafluorophosphate (LiPF6) and 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [Bmim][TFSI] was successfully prepared via the solution casting method. X-ray diffractometer, Fourier transformation infrared spectroscopy, scanning electron microscopy and electrochemical impedance spectroscopy were used to study the structural, optical, morphological and electrochemical properties of the prepared solid polymer electrolytes. From the results, with the addition of ionic liquid in the polymer electrolytes system improved the properties of the polymer electrolytes such as lower the crystallinity and become smooth in surface morphology, hence helps increase in ionic conductivity. High ionic conductivity exhibited at 30 wt% of 1.0 M LiPF6 (EC/DEC) (1:1) in the PHEMA with the value of 2.13 × 10−6 S cm−1. This value was increased up to one magnitude order with the addition of ionic liquid where the value is 8.01 × 10−5 S cm−1 at room temperature. This implies that these polymer electrolytes are possibly suitable for further application in low-power electrochemical devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Deng F, Wang X, He D, Hu J, Gong C, Ye YS, Xie X, Xue Z (2015) Microporous polymer electrolyte based on PVDF/PEO star polymer blends for lithium ion batteries. J Membr Sci 491:82–89CrossRef Deng F, Wang X, He D, Hu J, Gong C, Ye YS, Xie X, Xue Z (2015) Microporous polymer electrolyte based on PVDF/PEO star polymer blends for lithium ion batteries. J Membr Sci 491:82–89CrossRef
4.
Zurück zum Zitat Kumar A, Sharma R, Das MK, Gajbhiye P, Kar KK (2016) Impacts of ceramic filler and the crystallite size of polymer matrix on the ionic transport properties of lithium triflate/poly(vinylidene fluoride-co-hexafluoropropene) based polymer electrolytes. Electrochim Acta 215:1–11CrossRef Kumar A, Sharma R, Das MK, Gajbhiye P, Kar KK (2016) Impacts of ceramic filler and the crystallite size of polymer matrix on the ionic transport properties of lithium triflate/poly(vinylidene fluoride-co-hexafluoropropene) based polymer electrolytes. Electrochim Acta 215:1–11CrossRef
5.
Zurück zum Zitat Dzulkurnain NA, Ahmad A, Mohamed NS (2015) P (MMA-EMA) random copolymer electrolytes incorporating sodium iodide for potential application in a dye-sensitized solar cell. Polymers 7(2):266–280CrossRef Dzulkurnain NA, Ahmad A, Mohamed NS (2015) P (MMA-EMA) random copolymer electrolytes incorporating sodium iodide for potential application in a dye-sensitized solar cell. Polymers 7(2):266–280CrossRef
6.
Zurück zum Zitat Imperiyka M, Ahmad A, Hanifah SA, Rahman MYA (2013) Potential of UV-curable poly(glycidyl methacrylate-co-ethyl methacrylate)-based solid polymer electrolyte for lithium ion battery application. Int J Electrochem Sci 8(9):10932–10945 Imperiyka M, Ahmad A, Hanifah SA, Rahman MYA (2013) Potential of UV-curable poly(glycidyl methacrylate-co-ethyl methacrylate)-based solid polymer electrolyte for lithium ion battery application. Int J Electrochem Sci 8(9):10932–10945
7.
Zurück zum Zitat Chaurasia SK, Saroj AL, Shalu Singh VK, Tripathi AK, Gupta AK, Verma YL, Singh RK (2015) Studies on structural, thermal and AC conductivity scaling of PEO-LiPF6 polymer electrolyte with added ionic liquid [BMIMPF6]. AIP Adv 5(7):077178. https://doi.org/10.1063/1.4927768 CrossRef Chaurasia SK, Saroj AL, Shalu Singh VK, Tripathi AK, Gupta AK, Verma YL, Singh RK (2015) Studies on structural, thermal and AC conductivity scaling of PEO-LiPF6 polymer electrolyte with added ionic liquid [BMIMPF6]. AIP Adv 5(7):077178. https://​doi.​org/​10.​1063/​1.​4927768 CrossRef
8.
Zurück zum Zitat Long L, Wang S, Xiao M, Meng Y (2016) Polymer electrolytes for lithium polymer batteries. J Mater Chem A 4(26):10038–10069CrossRef Long L, Wang S, Xiao M, Meng Y (2016) Polymer electrolytes for lithium polymer batteries. J Mater Chem A 4(26):10038–10069CrossRef
9.
Zurück zum Zitat Su’ait MS, Ahmad A, Hamzah H, Rahman MYA (2009) Preparation and characterization of PMMA–MG49–LiClO4 solid polymeric electrolyte. J Phys D Appl Phys 42(5):055410CrossRef Su’ait MS, Ahmad A, Hamzah H, Rahman MYA (2009) Preparation and characterization of PMMA–MG49–LiClO4 solid polymeric electrolyte. J Phys D Appl Phys 42(5):055410CrossRef
10.
Zurück zum Zitat Dzulkurnain N, Rani M, Ahmad A, Mohamed N (2018) Effect of lithium salt on physicochemical properties of P (MMA-co-EMA) based copolymer electrolytes for dye-sensitized solar cell application. Ionics 24(1):269–276CrossRef Dzulkurnain N, Rani M, Ahmad A, Mohamed N (2018) Effect of lithium salt on physicochemical properties of P (MMA-co-EMA) based copolymer electrolytes for dye-sensitized solar cell application. Ionics 24(1):269–276CrossRef
11.
Zurück zum Zitat Yu Z, Qin D, Zhang Y, Sun H, Luo Y, Meng Q, Li D (2011) Quasi-solid-state dye-sensitized solar cell fabricated with poly(β-hydroxyethyl methacrylate) based organogel electrolyte. Energy Environ Sci 4(4):1298–1305CrossRef Yu Z, Qin D, Zhang Y, Sun H, Luo Y, Meng Q, Li D (2011) Quasi-solid-state dye-sensitized solar cell fabricated with poly(β-hydroxyethyl methacrylate) based organogel electrolyte. Energy Environ Sci 4(4):1298–1305CrossRef
13.
Zurück zum Zitat Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267CrossRef Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267CrossRef
14.
Zurück zum Zitat Zanardi C, Pigani L, Maccaferri G, Degli Esposti M, Fabbri P, Zannini P, Seeber R (2016) Development of a redox polymer based on poly(2-hydroxyethyl methacrylate) for disposable amperometric sensors. Electrochem Commun 62:34–37CrossRef Zanardi C, Pigani L, Maccaferri G, Degli Esposti M, Fabbri P, Zannini P, Seeber R (2016) Development of a redox polymer based on poly(2-hydroxyethyl methacrylate) for disposable amperometric sensors. Electrochem Commun 62:34–37CrossRef
15.
Zurück zum Zitat Dobić SN, Jovašević JS, Vojisavljević MD, Lj TS (2011) Hemocompatibility and swelling studies of poly(2-hydroxyethyl methacrylate-co-itaconic acid-co-poly(ethylene glycol) dimethacrylate) hydrogels. Hemijska industrija 65(6):675CrossRef Dobić SN, Jovašević JS, Vojisavljević MD, Lj TS (2011) Hemocompatibility and swelling studies of poly(2-hydroxyethyl methacrylate-co-itaconic acid-co-poly(ethylene glycol) dimethacrylate) hydrogels. Hemijska industrija 65(6):675CrossRef
16.
Zurück zum Zitat Liu J-W, Li X-H, Wang Z-X, Guo H-J, Peng W-J, Zhang Y-H, Hu Q-Y (2010) Preparation and characterization of lithium hexafluorophosphate for lithium-ion battery electrolyte. Trans Nonferr Met Soc China 20(2):344–348CrossRef Liu J-W, Li X-H, Wang Z-X, Guo H-J, Peng W-J, Zhang Y-H, Hu Q-Y (2010) Preparation and characterization of lithium hexafluorophosphate for lithium-ion battery electrolyte. Trans Nonferr Met Soc China 20(2):344–348CrossRef
18.
Zurück zum Zitat Ibrahim S, Yasin SMM, Ahmad R, Johan MR (2012) Conductivity, thermal and morphology studies of PEO based salted polymer electrolytes. Solid State Sci 14(8):1111–1116CrossRef Ibrahim S, Yasin SMM, Ahmad R, Johan MR (2012) Conductivity, thermal and morphology studies of PEO based salted polymer electrolytes. Solid State Sci 14(8):1111–1116CrossRef
20.
Zurück zum Zitat Shalu VKS, Singh RK (2015) Development of ion conducting polymer gel electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties. J Mater Chem C 3(28):7305–7318CrossRef Shalu VKS, Singh RK (2015) Development of ion conducting polymer gel electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties. J Mater Chem C 3(28):7305–7318CrossRef
21.
Zurück zum Zitat Ramesh S, Liew C-W (2012) Rheological characterizations of ionic liquid-based gel polymer electrolytes and fumed silica-based composite polymer electrolytes. Ceram Int 38(4):3411–3417CrossRef Ramesh S, Liew C-W (2012) Rheological characterizations of ionic liquid-based gel polymer electrolytes and fumed silica-based composite polymer electrolytes. Ceram Int 38(4):3411–3417CrossRef
22.
Zurück zum Zitat Liew C-W, Ramesh S, Durairaj R (2012) Impact of low viscosity ionic liquid on PMMA–PVC–LiTFSI polymer electrolytes based on AC-impedance, dielectric behavior, and HATR–FTIR characteristics. J Mater Res 27(23):2996–3004CrossRef Liew C-W, Ramesh S, Durairaj R (2012) Impact of low viscosity ionic liquid on PMMA–PVC–LiTFSI polymer electrolytes based on AC-impedance, dielectric behavior, and HATR–FTIR characteristics. J Mater Res 27(23):2996–3004CrossRef
23.
Zurück zum Zitat Carbas BB, Gulen M, Tolu MC, Sonmezoglu S (2017) Hydrogen sulphate-based ionic liquid-assisted electro-polymerization of PEDOT catalyst material for high-efficiency photoelectrochemical solar cells. Sci Rep 7(1):11672PubMedPubMedCentralCrossRef Carbas BB, Gulen M, Tolu MC, Sonmezoglu S (2017) Hydrogen sulphate-based ionic liquid-assisted electro-polymerization of PEDOT catalyst material for high-efficiency photoelectrochemical solar cells. Sci Rep 7(1):11672PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Carbas BB, Tekin B (2018) Poly(3,4-ethylenedioxythiophene) electrode grown in the presence of ionic liquid and its symmetrical electrochemical supercapacitor application. Polym Bull 75(4):1547–1562CrossRef Carbas BB, Tekin B (2018) Poly(3,4-ethylenedioxythiophene) electrode grown in the presence of ionic liquid and its symmetrical electrochemical supercapacitor application. Polym Bull 75(4):1547–1562CrossRef
25.
Zurück zum Zitat MacFarlane DR, Tachikawa N, Forsyth M, Pringle JM, Howlett PC, Elliott GD, Davis JH, Watanabe M, Simon P, Angell CA (2014) Energy applications of ionic liquids. Energy Environ Sci 7(1):232–250CrossRef MacFarlane DR, Tachikawa N, Forsyth M, Pringle JM, Howlett PC, Elliott GD, Davis JH, Watanabe M, Simon P, Angell CA (2014) Energy applications of ionic liquids. Energy Environ Sci 7(1):232–250CrossRef
26.
Zurück zum Zitat Radzir NNM, Hanifah SA, Ahmad A, Hassan NH, Bella F (2015) Effect of lithium bis(trifluoromethylsulfonyl) imide salt-doped UV-cured glycidyl methacrylate. J Solid State Electrochem 19(10):3079–3085CrossRef Radzir NNM, Hanifah SA, Ahmad A, Hassan NH, Bella F (2015) Effect of lithium bis(trifluoromethylsulfonyl) imide salt-doped UV-cured glycidyl methacrylate. J Solid State Electrochem 19(10):3079–3085CrossRef
27.
Zurück zum Zitat Yokota Y, Miyamoto H, Imanishi A, Inagaki K, Morikawa Y, K-i Fukui (2018) Structural and dynamic properties of 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide/mica and graphite interfaces revealed by molecular dynamics simulation. Phys Chem Chem Phys 20(9):6668–6676PubMedCrossRef Yokota Y, Miyamoto H, Imanishi A, Inagaki K, Morikawa Y, K-i Fukui (2018) Structural and dynamic properties of 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide/mica and graphite interfaces revealed by molecular dynamics simulation. Phys Chem Chem Phys 20(9):6668–6676PubMedCrossRef
29.
Zurück zum Zitat Nabilah MRN, Alwi MA, Su’ait MS, Imperiyka M, Hanifah SA, Ahmad A, Hassan NH, Rahman MYA (2016) Effect of ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide on the properties of poly(glycidyl methacrylate) based solid polymer electrolytes. Russ J Electrochem 52(4):362–373. https://doi.org/10.1134/s1023193516040091 CrossRef Nabilah MRN, Alwi MA, Su’ait MS, Imperiyka M, Hanifah SA, Ahmad A, Hassan NH, Rahman MYA (2016) Effect of ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide on the properties of poly(glycidyl methacrylate) based solid polymer electrolytes. Russ J Electrochem 52(4):362–373. https://​doi.​org/​10.​1134/​s102319351604009​1 CrossRef
30.
Zurück zum Zitat Prasanna CMS, Suthanthiraraj SA (2016) Effective influences of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (EMIMTFSI) ionic liquid on the ion transport properties of micro-porous zinc-ion conducting poly(vinyl chloride)/poly(ethyl methacrylate) blend-based polymer electrolytes. J Polym Res 23(7):140. https://doi.org/10.1007/s10965-016-1043-0 CrossRef Prasanna CMS, Suthanthiraraj SA (2016) Effective influences of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (EMIMTFSI) ionic liquid on the ion transport properties of micro-porous zinc-ion conducting poly(vinyl chloride)/poly(ethyl methacrylate) blend-based polymer electrolytes. J Polym Res 23(7):140. https://​doi.​org/​10.​1007/​s10965-016-1043-0 CrossRef
31.
Zurück zum Zitat Ibrahim S, Ahmad R, Johan MR (2012) Conductivity and optical studies of plasticized solid polymer electrolytes doped with carbon nanotube. J Lumin 132(1):147–152CrossRef Ibrahim S, Ahmad R, Johan MR (2012) Conductivity and optical studies of plasticized solid polymer electrolytes doped with carbon nanotube. J Lumin 132(1):147–152CrossRef
32.
Zurück zum Zitat Luciani G, Costantini A, Silvestri B, Tescione F, Branda F, Pezzella A (2008) Synthesis, structure and bioactivity of pHEMA/SiO2 hybrids derived through in situ sol–gel process. J Sol-Gel Sci Technol 46(2):166CrossRef Luciani G, Costantini A, Silvestri B, Tescione F, Branda F, Pezzella A (2008) Synthesis, structure and bioactivity of pHEMA/SiO2 hybrids derived through in situ sol–gel process. J Sol-Gel Sci Technol 46(2):166CrossRef
33.
Zurück zum Zitat Selvasekarapandian S, Baskaran R, Kamishima O, Kawamura J, Hattori T (2006) Laser Raman and FTIR studies on Li+ interaction in PVAc–LiClO4 polymer electrolytes. Spectrochim Acta Part A Mol Biomol Spectrosc 65(5):1234–1240CrossRef Selvasekarapandian S, Baskaran R, Kamishima O, Kawamura J, Hattori T (2006) Laser Raman and FTIR studies on Li+ interaction in PVAc–LiClO4 polymer electrolytes. Spectrochim Acta Part A Mol Biomol Spectrosc 65(5):1234–1240CrossRef
34.
Zurück zum Zitat Singh VK, Balo L, Gupta H, Singh S, Singh RK (2017) Solid polymer electrolytes based on Li+/ionic liquid for lithium secondary batteries. J Solid State Electrochem 21(6):1713–1723CrossRef Singh VK, Balo L, Gupta H, Singh S, Singh RK (2017) Solid polymer electrolytes based on Li+/ionic liquid for lithium secondary batteries. J Solid State Electrochem 21(6):1713–1723CrossRef
35.
Zurück zum Zitat Kuo P-L, Tsao C-H, Hsu C-H, Chen S-T, Hsu H-M (2016) A new strategy for preparing oligomeric ionic liquid gel polymer electrolytes for high-performance and nonflammable lithium ion batteries. J Membr Sci 499:462–469CrossRef Kuo P-L, Tsao C-H, Hsu C-H, Chen S-T, Hsu H-M (2016) A new strategy for preparing oligomeric ionic liquid gel polymer electrolytes for high-performance and nonflammable lithium ion batteries. J Membr Sci 499:462–469CrossRef
36.
Zurück zum Zitat Dzulkurnain N, Ahmad A, Mohamed N (2016) Addition of 1 methyl-3 propyl imidazolium iodide into polymer electrolyte system for enhancement in dye sensitized solar cell efficiency. Sci Adv Mater 8(1):41–46CrossRef Dzulkurnain N, Ahmad A, Mohamed N (2016) Addition of 1 methyl-3 propyl imidazolium iodide into polymer electrolyte system for enhancement in dye sensitized solar cell efficiency. Sci Adv Mater 8(1):41–46CrossRef
38.
Zurück zum Zitat Ibrahim S, Yasin SMM, Johan MR (2013) Influence of carbon nanotubes on the optical properties of plasticized solid polymer electrolytes. Appl Surf Sci 276:323–327CrossRef Ibrahim S, Yasin SMM, Johan MR (2013) Influence of carbon nanotubes on the optical properties of plasticized solid polymer electrolytes. Appl Surf Sci 276:323–327CrossRef
39.
Zurück zum Zitat Radzir N, Anuar F, Hanifah S, Ahmad A, Hassan N (2015) An investigation of polymer electrolyte based on poly(glycidylmethacrylate) doped with imidazolium ionic liquid. J Mater Environ Sci 6:1436–1443 Radzir N, Anuar F, Hanifah S, Ahmad A, Hassan N (2015) An investigation of polymer electrolyte based on poly(glycidylmethacrylate) doped with imidazolium ionic liquid. J Mater Environ Sci 6:1436–1443
41.
Zurück zum Zitat Aziz SB, Kadir M, Abidin Z (2016) Structural, morphological and electrochemical impedance study of CS:LiTf based solid polymer electrolyte: reformulated Arrhenius equation for ion transport study. Int J Electrochem Sci 11:9228–9244CrossRef Aziz SB, Kadir M, Abidin Z (2016) Structural, morphological and electrochemical impedance study of CS:LiTf based solid polymer electrolyte: reformulated Arrhenius equation for ion transport study. Int J Electrochem Sci 11:9228–9244CrossRef
42.
Zurück zum Zitat Mokhtar M, Majlan EH, Ahmad A, Tasirin SM, Daud WRW (2018) Effect of ZnO filler on PVA-alkaline solid polymer electrolyte for aluminum-air battery applications. J Electrochem Soc 165(11):A2483–A2492CrossRef Mokhtar M, Majlan EH, Ahmad A, Tasirin SM, Daud WRW (2018) Effect of ZnO filler on PVA-alkaline solid polymer electrolyte for aluminum-air battery applications. J Electrochem Soc 165(11):A2483–A2492CrossRef
44.
Zurück zum Zitat Radzir N, Hanifah SA, Ahmad A, Hassan NH (2015) An investigation of gel polymer electrolytes plasticized with imidazolium ionic liquid. Asian J Chem 27(9):3411CrossRef Radzir N, Hanifah SA, Ahmad A, Hassan NH (2015) An investigation of gel polymer electrolytes plasticized with imidazolium ionic liquid. Asian J Chem 27(9):3411CrossRef
46.
Zurück zum Zitat Zhao J, Wang L, He X, Wan C, Jiang C (2008) Determination of lithium-ion transference numbers in LiPF6–PC solutions based on electrochemical polarization and NMR measurements. J Electrochem Soc 155(4):A292–A296CrossRef Zhao J, Wang L, He X, Wan C, Jiang C (2008) Determination of lithium-ion transference numbers in LiPF6–PC solutions based on electrochemical polarization and NMR measurements. J Electrochem Soc 155(4):A292–A296CrossRef
47.
Zurück zum Zitat Fromling T, Kunze M, Schonhoff M, Sundermeyer J, Roling B (2008) Enhanced lithium transference numbers in ionic liquid electrolytes. J Phys Chem B 112(41):12985–12990PubMedCrossRef Fromling T, Kunze M, Schonhoff M, Sundermeyer J, Roling B (2008) Enhanced lithium transference numbers in ionic liquid electrolytes. J Phys Chem B 112(41):12985–12990PubMedCrossRef
48.
Zurück zum Zitat Kufian M, Majid S (2010) Performance of lithium-ion cells using 1 M LiPF6 in EC/DEC (v/v = 1/2) electrolyte with ethyl propionate additive. Ionics 16(5):409–416CrossRef Kufian M, Majid S (2010) Performance of lithium-ion cells using 1 M LiPF6 in EC/DEC (v/v = 1/2) electrolyte with ethyl propionate additive. Ionics 16(5):409–416CrossRef
49.
Zurück zum Zitat Shukur M, Kadir M (2015) Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices. Electrochim Acta 158:152–165CrossRef Shukur M, Kadir M (2015) Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices. Electrochim Acta 158:152–165CrossRef
50.
Zurück zum Zitat Deraman S, Mohamed N, Subban R (2013) Conductivity and electrochemical studies on polymer electrolytes based on poly vinyl(chloride)-ammonium triflate-ionic liquid for proton battery. Int J Electrochem Sci 8(1):1459–1468 Deraman S, Mohamed N, Subban R (2013) Conductivity and electrochemical studies on polymer electrolytes based on poly vinyl(chloride)-ammonium triflate-ionic liquid for proton battery. Int J Electrochem Sci 8(1):1459–1468
Metadaten
Titel
Effect of lithium hexafluorophosphate LiPF6 and 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [Bmim][TFSI] immobilized in poly(2-hydroxyethyl methacrylate) PHEMA
verfasst von
N. I. B. Wafi
W. R. W. Daud
A. Ahmad
E. H. Majlan
M. R. Somalu
Publikationsdatum
19.10.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 7/2019
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-018-2553-1

Weitere Artikel der Ausgabe 7/2019

Polymer Bulletin 7/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.