Skip to main content
Erschienen in: Journal of Iron and Steel Research International 9/2023

19.04.2023 | Original Paper

Effect of low basicity refining slag on evolution and removal of oxide inclusions in 55SiCrA spring steel

verfasst von: Chen Wang, Wei Tang, Jiang-shan Zhang, Jun-xiong Huang, Kun-rui Shen, Jun Chen, Qing Liu

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 9/2023

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The laboratory experiments, thermodynamic analysis, dynamic analysis, and industrial trials were carried out to investigate the influence of refining slag on the evolution and removal of oxide inclusions in 55SiCrA spring steel. The reduction in basicity and Al2O3 content in refining slag can reduce the [Al]s content in the molten steel, which is conducive to the control of the low melting point of inclusions. However, the refining slag with excessively low basicity transfers the oxygen element to molten steel and increases the Al2O3 content in inclusions, which is harmful to the control of inclusions. According to the chemical compositions of inclusions and refining slag in laboratory experiments, their physical parameters were calculated. The maximum separation ratio and the moving time of inclusions to reach the maximum separation ratio (tmax) of inclusions under different laboratory experimental conditions were studied. The maximum separation ratio of inclusions is positively correlated with the overall wettability (cosθIMS) among the slag, steel, and inclusions. The maximum separation ratio of inclusions obtained by laboratory experiments is between 85% and 91%. The tmax decreases with the decline in basicity and Al2O3 content of refining slag, but excessively low basicity will increase the tmax. The basicity of refining slag in the range of 0.88–0.97 and the content of Al2O3 less than 6% is not only conducive to reducing the content of Al2O3 and the melting point of inclusions but also beneficial to removing the inclusions to the slag. The slag system shows good metallurgical results in industrial trials.
Literatur
[1]
Zurück zum Zitat F. Ozturk, S. Toros, S. Kilic, J. Iron Steel Res. Int. 16 (2009) No. 6, 41–46.CrossRef F. Ozturk, S. Toros, S. Kilic, J. Iron Steel Res. Int. 16 (2009) No. 6, 41–46.CrossRef
[2]
[3]
Zurück zum Zitat G. Niu, Y.L. Chen, H.B. Wu, X. Wang, M.F. Zuo, Z.J. Xu, J. Iron Steel Res. Int. 23 (2016) 1323–1332.CrossRef G. Niu, Y.L. Chen, H.B. Wu, X. Wang, M.F. Zuo, Z.J. Xu, J. Iron Steel Res. Int. 23 (2016) 1323–1332.CrossRef
[4]
Zurück zum Zitat C. Chen, Z. Jiang, Y. Li, M. Sun, Q. Wang, K. Chen, H. Li, ISIJ Int. 60 (2020) 617–627.CrossRef C. Chen, Z. Jiang, Y. Li, M. Sun, Q. Wang, K. Chen, H. Li, ISIJ Int. 60 (2020) 617–627.CrossRef
[6]
Zurück zum Zitat Y. Murakami, S. Kodama, S. Konuma, Int. J. Fatigue 11 (1989) 291–298.CrossRef Y. Murakami, S. Kodama, S. Konuma, Int. J. Fatigue 11 (1989) 291–298.CrossRef
[7]
Zurück zum Zitat L.P. Wu, J.G. Zhi, J.S. Zhang, B. Zhao, Q. Liu, Materials 14 (2021) 5262.CrossRef L.P. Wu, J.G. Zhi, J.S. Zhang, B. Zhao, Q. Liu, Materials 14 (2021) 5262.CrossRef
[8]
Zurück zum Zitat Kobe Steel Ltd., Production of high-Si clean steel for spring, Japan, JPS61136612A, 1984. Kobe Steel Ltd., Production of high-Si clean steel for spring, Japan, JPS61136612A, 1984.
[9]
Zurück zum Zitat C. Bertrand, J. Molinero, S. Landa, R. Elvira, M. Wild, G. Barthold, H. Schifferl, Ironmak. Steelmak. 30 (2003) 165–169.CrossRef C. Bertrand, J. Molinero, S. Landa, R. Elvira, M. Wild, G. Barthold, H. Schifferl, Ironmak. Steelmak. 30 (2003) 165–169.CrossRef
[10]
Zurück zum Zitat H. Yang, J. Ye, X. Wu, Y. Peng, Y. Fang, X. Zhao, Metall. Mater. Trans. B 47 (2016) 1435–1444.CrossRef H. Yang, J. Ye, X. Wu, Y. Peng, Y. Fang, X. Zhao, Metall. Mater. Trans. B 47 (2016) 1435–1444.CrossRef
[11]
[12]
Zurück zum Zitat J. Guo, S. Han, X. Chen, H. Guo, Y. Yan, Metall. Mater. Trans. B 51 (2020) 1813–1823.CrossRef J. Guo, S. Han, X. Chen, H. Guo, Y. Yan, Metall. Mater. Trans. B 51 (2020) 1813–1823.CrossRef
[13]
Zurück zum Zitat K. Nakajima, K. Okamura, in: Proceedings of the 4th Int. Conf. on Molten Slags and Fluxes, ISIJ, Sendai, Japan, 1992, pp. 505–510. K. Nakajima, K. Okamura, in: Proceedings of the 4th Int. Conf. on Molten Slags and Fluxes, ISIJ, Sendai, Japan, 1992, pp. 505–510.
[14]
Zurück zum Zitat J. Strandh, K. Nakajima, R. Eriksson, P. Jönsson, ISIJ Int. 45 (2005) 1838–1847.CrossRef J. Strandh, K. Nakajima, R. Eriksson, P. Jönsson, ISIJ Int. 45 (2005) 1838–1847.CrossRef
[15]
[16]
Zurück zum Zitat S.F. Yang, J.S. Li, C. Liu, L.Y. Sun, H.B. Yang, Metall. Mater. Trans. B 45 (2014) 2453–2463.CrossRef S.F. Yang, J.S. Li, C. Liu, L.Y. Sun, H.B. Yang, Metall. Mater. Trans. B 45 (2014) 2453–2463.CrossRef
[17]
Zurück zum Zitat C. Liu, S.F. Yang, J.S. Li, L.B. Zhu, X.G. Li, Metall. Mater. Trans. B 47 (2016) 1882–1892.CrossRef C. Liu, S.F. Yang, J.S. Li, L.B. Zhu, X.G. Li, Metall. Mater. Trans. B 47 (2016) 1882–1892.CrossRef
[18]
Zurück zum Zitat S.H. Chen, M. Jiang, X.F. He, X.H. Wang, Int. J. Miner. Metall. Mater. 19 (2012) 490–498.CrossRef S.H. Chen, M. Jiang, X.F. He, X.H. Wang, Int. J. Miner. Metall. Mater. 19 (2012) 490–498.CrossRef
[19]
Zurück zum Zitat C. Wang, Q. Liu, J. Zhang, J. Chen, D. Lin, X. Wang, J. Zhu, in: Int. Symp. Proceedings of the 12th High-Temp. Metall. Process., Proc. Symp., Springer, Anaheim, USA, 2022, pp. 445–455. C. Wang, Q. Liu, J. Zhang, J. Chen, D. Lin, X. Wang, J. Zhu, in: Int. Symp. Proceedings of the 12th High-Temp. Metall. Process., Proc. Symp., Springer, Anaheim, USA, 2022, pp. 445–455.
[20]
Zurück zum Zitat Y.G. Chi, Z.Y. Deng, M.Y. Zhu, Metall. Mater. Trans. B 49 (2018) 440–450.CrossRef Y.G. Chi, Z.Y. Deng, M.Y. Zhu, Metall. Mater. Trans. B 49 (2018) 440–450.CrossRef
[22]
Zurück zum Zitat C. Wang, Y.S. Han, J.S. Zhang, D. Xiao, J. Yang, J. Chen, Q. Liu, Ironmak. Steelmak. 48 (2021) 466–476.CrossRef C. Wang, Y.S. Han, J.S. Zhang, D. Xiao, J. Yang, J. Chen, Q. Liu, Ironmak. Steelmak. 48 (2021) 466–476.CrossRef
[23]
Zurück zum Zitat C. Chen, M. Sun, X. Chen, B. Wang, J. Zhou, Z. Jiang, Steel Res. Int. 92 (2021) 2100507. C. Chen, M. Sun, X. Chen, B. Wang, J. Zhou, Z. Jiang, Steel Res. Int. 92 (2021) 2100507.
[24]
Zurück zum Zitat J. Kawahara, K. Tanabe, T. Banno, M. Yoshida, Wire J. Int. 25 (1992) 55–61. J. Kawahara, K. Tanabe, T. Banno, M. Yoshida, Wire J. Int. 25 (1992) 55–61.
[25]
Zurück zum Zitat T. Abe, Y. Furuya, S. Matsuoka, Fatigue Fract. Eng. Mater. Struct. 27 (2004) 159–167.CrossRef T. Abe, Y. Furuya, S. Matsuoka, Fatigue Fract. Eng. Mater. Struct. 27 (2004) 159–167.CrossRef
[26]
Zurück zum Zitat J. Björklund, M. Andersson, P. Jönsson, Ironmak. Steelmak. 34 (2007) 312–324.CrossRef J. Björklund, M. Andersson, P. Jönsson, Ironmak. Steelmak. 34 (2007) 312–324.CrossRef
[27]
Zurück zum Zitat B.H. Yoon, K.H. Heo, J.S. Kim, H.S. Sohn, Ironmak. Steelmak. 29 (2002) 214–217.CrossRef B.H. Yoon, K.H. Heo, J.S. Kim, H.S. Sohn, Ironmak. Steelmak. 29 (2002) 214–217.CrossRef
[28]
Zurück zum Zitat S. Basu, A.K. Lahiri, S. Seetharaman, Metall. Mater. Trans. B 39 (2008) 447–456.CrossRef S. Basu, A.K. Lahiri, S. Seetharaman, Metall. Mater. Trans. B 39 (2008) 447–456.CrossRef
[29]
Zurück zum Zitat F. Ferey, V. Briaud, P. Violet, A. Pisch, J. Phase Equilib. Diffus. 41 (2020) 443–456.CrossRef F. Ferey, V. Briaud, P. Violet, A. Pisch, J. Phase Equilib. Diffus. 41 (2020) 443–456.CrossRef
[30]
Zurück zum Zitat D.S.R. Coradini, A.R.R. de Lima, R. Deike, V.B. Telles, J.R. de Oliveira, J. Mater. Res. Technol. 9 (2020) 7508–7517.CrossRef D.S.R. Coradini, A.R.R. de Lima, R. Deike, V.B. Telles, J.R. de Oliveira, J. Mater. Res. Technol. 9 (2020) 7508–7517.CrossRef
[31]
Zurück zum Zitat K. Steneholm, M. Andersson, M. Nzotta, P. Jönsson, Steel Res. Int. 78 (2007) 522–530.CrossRef K. Steneholm, M. Andersson, M. Nzotta, P. Jönsson, Steel Res. Int. 78 (2007) 522–530.CrossRef
[32]
Zurück zum Zitat X.H. Huang, Theory of iron and steel metallurgy, 3rd ed., Metallurgical Industry Press, Beijing, China, 2002. X.H. Huang, Theory of iron and steel metallurgy, 3rd ed., Metallurgical Industry Press, Beijing, China, 2002.
[33]
Zurück zum Zitat G. Bernard, P. Riboud, G. Urbain, Revue de Metallurgie, Cahiersd Informations Techniques 78 (1981) 421–433.CrossRef G. Bernard, P. Riboud, G. Urbain, Revue de Metallurgie, Cahiersd Informations Techniques 78 (1981) 421–433.CrossRef
[34]
Zurück zum Zitat W. Yang, C. Guo, C. Li, L. Zhang, Metall. Mater. Trans. B 48 (2017) 2267–2273.CrossRef W. Yang, C. Guo, C. Li, L. Zhang, Metall. Mater. Trans. B 48 (2017) 2267–2273.CrossRef
[35]
Zurück zum Zitat L. Wang, X. Wang, J. Zhang, W. Wang, X. Zhuo, Iron and Steel 39 (2004) 21–23. L. Wang, X. Wang, J. Zhang, W. Wang, X. Zhuo, Iron and Steel 39 (2004) 21–23.
[36]
Zurück zum Zitat J. Yang, X.H. Wang, M. Jiang, W.J. Wang, J. Iron Steel Res. Int. 18 (2011) No. 7, 8–14.CrossRef J. Yang, X.H. Wang, M. Jiang, W.J. Wang, J. Iron Steel Res. Int. 18 (2011) No. 7, 8–14.CrossRef
[37]
Zurück zum Zitat K. Wang, M. Jiang, X. Wang, Y. Wang, H. Zhao, Z. Cao, Metall. Mater. Trans. B 47 (2016) 282–290.CrossRef K. Wang, M. Jiang, X. Wang, Y. Wang, H. Zhao, Z. Cao, Metall. Mater. Trans. B 47 (2016) 282–290.CrossRef
[38]
Zurück zum Zitat H. Zhang, Y. Peng, S. Zhang, C. Liu, R. Cheng, H. Ni, Metall. Mater. Trans. B 53 (2022) 702–715.CrossRef H. Zhang, Y. Peng, S. Zhang, C. Liu, R. Cheng, H. Ni, Metall. Mater. Trans. B 53 (2022) 702–715.CrossRef
[39]
Zurück zum Zitat H.P. Du, Special Steel 36 (2015) No. 4, 41–44. H.P. Du, Special Steel 36 (2015) No. 4, 41–44.
[40]
Zurück zum Zitat J. Strandh, K. Nakajima, R. Eriksson, P. Jönsson, ISIJ Int. 45 (2005) 1597–1606.CrossRef J. Strandh, K. Nakajima, R. Eriksson, P. Jönsson, ISIJ Int. 45 (2005) 1597–1606.CrossRef
[41]
Zurück zum Zitat J. Xin, L. Guo, L. Jiao, Chin. J. Process. Eng. 17 (2017) 395–399. J. Xin, L. Guo, L. Jiao, Chin. J. Process. Eng. 17 (2017) 395–399.
[42]
Zurück zum Zitat K.C. Mills, Slags model (ed 1.07), National Physical Laboratory, London, UK, 1991. K.C. Mills, Slags model (ed 1.07), National Physical Laboratory, London, UK, 1991.
[43]
Zurück zum Zitat J. Wikström, K. Nakajima, L. Jonsson, P. Jönsson, Steel Res. Int. 79 (2008) 826–834.CrossRef J. Wikström, K. Nakajima, L. Jonsson, P. Jönsson, Steel Res. Int. 79 (2008) 826–834.CrossRef
Metadaten
Titel
Effect of low basicity refining slag on evolution and removal of oxide inclusions in 55SiCrA spring steel
verfasst von
Chen Wang
Wei Tang
Jiang-shan Zhang
Jun-xiong Huang
Kun-rui Shen
Jun Chen
Qing Liu
Publikationsdatum
19.04.2023
Verlag
Springer Nature Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 9/2023
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-023-00941-5

Weitere Artikel der Ausgabe 9/2023

Journal of Iron and Steel Research International 9/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.