Skip to main content
Erschienen in: Glass and Ceramics 1-2/2020

25.05.2020

Effect of Molarity and Temperature of Alkaline Activator Solution on the Rheological Properties and Structure Formation of Alkali-Activated Refractory Materials

verfasst von: I. Pundiene, I. Pranckeviciene, Ch. Zhu

Erschienen in: Glass and Ceramics | Ausgabe 1-2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of the molarity (from 3.64 to 1.74 M) of an alkaline activator solution (AAS) and temperature (from 10 to 20°C) of a mixture of alkali-activated materials (AAM) based on chamotte and metakaolin on the rheological properties, structure development on solidification, and strength of samples after firing at temperatures 800 and 1000°C was studied. It was determined that reducing the molarity of AAS and raising the temperature reduces the viscosity of the AAM mixture. Increasing the molarity of AAS and the temperature of the mixture accelerates structure formation and increases the strength of samples from 8.8 to 22 MPa on solidification and from 6.8 to 20 MPa after firing at temperature 1000°C. The density of the samples after firing increases from 1270 to 1510 kg/m3, and water absorption decreases from 15.4 to 13.4%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. C. G. Juenger, F.Winnefeld, J. L. Provis, et al., “Advances in alternative cementitious binders,” Cement Concrete Res., 41, 1232 – 1243 (2011).CrossRef M. C. G. Juenger, F.Winnefeld, J. L. Provis, et al., “Advances in alternative cementitious binders,” Cement Concrete Res., 41, 1232 – 1243 (2011).CrossRef
2.
Zurück zum Zitat G. Habert, J. B. d’Espinose de Lacaillerie, and N. Roussel, “An environmental evaluation of geopolymer based concrete production: reviewing current research trends,” J. Cleaner Prod., 19, 1229 – 1238 (2011).CrossRef G. Habert, J. B. d’Espinose de Lacaillerie, and N. Roussel, “An environmental evaluation of geopolymer based concrete production: reviewing current research trends,” J. Cleaner Prod., 19, 1229 – 1238 (2011).CrossRef
3.
Zurück zum Zitat P. Duxson, A. Fernandez-Jimenez, J. L. Provis, et al., “Geopolymer technology: the current state of the art,” J. Mater. Sci., 42, 2917 – 2933 (2007).CrossRef P. Duxson, A. Fernandez-Jimenez, J. L. Provis, et al., “Geopolymer technology: the current state of the art,” J. Mater. Sci., 42, 2917 – 2933 (2007).CrossRef
4.
Zurück zum Zitat Ch. Panagiotopoulou, E. Kontori, Th. Perraki, and G. Kakali, “Dissolution of aluminosilicate minerals and by-products in alkaline media,” J. Mater. Sci., 42, 2967 – 2973 (2007).CrossRef Ch. Panagiotopoulou, E. Kontori, Th. Perraki, and G. Kakali, “Dissolution of aluminosilicate minerals and by-products in alkaline media,” J. Mater. Sci., 42, 2967 – 2973 (2007).CrossRef
5.
Zurück zum Zitat L. Weng, K. Sagoe-Crentsil, T. Brown, and S. Song, “Effects of aluminates on the formation of geopolymers,” Mater. Sci. Eng., 117, 163 – 168 (2005).CrossRef L. Weng, K. Sagoe-Crentsil, T. Brown, and S. Song, “Effects of aluminates on the formation of geopolymers,” Mater. Sci. Eng., 117, 163 – 168 (2005).CrossRef
6.
Zurück zum Zitat Á. Palomo, S. Alonso, A. Fernández-Jiménez, et al., “Alkaline activation of fly ashes: NMR study of the reaction products,” J. Am. Ceram. Soc., 87, 1141 – 1145 (2004).CrossRef Á. Palomo, S. Alonso, A. Fernández-Jiménez, et al., “Alkaline activation of fly ashes: NMR study of the reaction products,” J. Am. Ceram. Soc., 87, 1141 – 1145 (2004).CrossRef
7.
Zurück zum Zitat A. Fernández-Jiménez, A. Palomo, I. Sobrados, and J. Sanz, “The role played by the reactive alumina content in the alkaline activation of fly ashes,” Micropor. Mesopor. Mater., 91, 111 – 119 (2006).CrossRef A. Fernández-Jiménez, A. Palomo, I. Sobrados, and J. Sanz, “The role played by the reactive alumina content in the alkaline activation of fly ashes,” Micropor. Mesopor. Mater., 91, 111 – 119 (2006).CrossRef
8.
Zurück zum Zitat J. Davidovits, “Geopolymers: inorganic polymeric new materials,” J. Thermal Anal., 37, 1633 – 1656 (1991).CrossRef J. Davidovits, “Geopolymers: inorganic polymeric new materials,” J. Thermal Anal., 37, 1633 – 1656 (1991).CrossRef
9.
Zurück zum Zitat P. Duxson, G. C. Lukey, and J. S. J. V. Deventer, “The thermal evolution of metakaolin geopolymers: Part 2. Phase stability and structural development,” J. Non-Cryst. Solids, 353, 2186 – 2200 (2007).CrossRef P. Duxson, G. C. Lukey, and J. S. J. V. Deventer, “The thermal evolution of metakaolin geopolymers: Part 2. Phase stability and structural development,” J. Non-Cryst. Solids, 353, 2186 – 2200 (2007).CrossRef
10.
Zurück zum Zitat C. Shi, A. F. Jiménez, and A. Palomo, “New cements for the 21st century: the pursuit of an alternative to Portland cement,” Cement Concrete Res., 41, 750 – 763 (2011).CrossRef C. Shi, A. F. Jiménez, and A. Palomo, “New cements for the 21st century: the pursuit of an alternative to Portland cement,” Cement Concrete Res., 41, 750 – 763 (2011).CrossRef
11.
Zurück zum Zitat I. Ismail, S. A. Bernal, J. L. Provis, et al., “Microstructural changes in alkali activated fly ash/slag geopolymers; with sulfate exposure,” Mater. Struct., 46, 361 – 373 (2013).CrossRef I. Ismail, S. A. Bernal, J. L. Provis, et al., “Microstructural changes in alkali activated fly ash/slag geopolymers; with sulfate exposure,” Mater. Struct., 46, 361 – 373 (2013).CrossRef
12.
Zurück zum Zitat Q. Wan, F. Rao, S. Song, et al., “Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios,” Cement Concrete Comp., 79, 45 – 52 (2017).CrossRef Q. Wan, F. Rao, S. Song, et al., “Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios,” Cement Concrete Comp., 79, 45 – 52 (2017).CrossRef
13.
Zurück zum Zitat K. Vance, A. Dakhane, G. Sant, and N. Neithalath, “Observations on the rheological response of alkali activated fly ash suspensions: the role of activator type and concentration,” Rheologica Acta, 53, 843 – 855 (2014).CrossRef K. Vance, A. Dakhane, G. Sant, and N. Neithalath, “Observations on the rheological response of alkali activated fly ash suspensions: the role of activator type and concentration,” Rheologica Acta, 53, 843 – 855 (2014).CrossRef
14.
Zurück zum Zitat A. Poulesquen, F. Frizon, and D. Lambertin, “Rheological behavior of alkali-activated metakaolin during geopolymerization,” J. Non-Cryst. Solids, 357, 3565 – 3571 (2013).CrossRef A. Poulesquen, F. Frizon, and D. Lambertin, “Rheological behavior of alkali-activated metakaolin during geopolymerization,” J. Non-Cryst. Solids, 357, 3565 – 3571 (2013).CrossRef
15.
Zurück zum Zitat H. Xu and J. S. J. Van Deventer, “The geopolymerisation of aluminosilicate minerals,” Int. J. Mineral Proc., 59, 247 – 266 (2000).CrossRef H. Xu and J. S. J. Van Deventer, “The geopolymerisation of aluminosilicate minerals,” Int. J. Mineral Proc., 59, 247 – 266 (2000).CrossRef
16.
Zurück zum Zitat N. Murayama, H. Yamamoto, and J. Shibata, “Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction,” Int. J. Mineral Proc., 64, 1 – 17 (2002).CrossRef N. Murayama, H. Yamamoto, and J. Shibata, “Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction,” Int. J. Mineral Proc., 64, 1 – 17 (2002).CrossRef
17.
Zurück zum Zitat P. Nath and P. K. Sarker, “Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature,” Cement Concrete Comp., 55, 205 – 214 (2015).CrossRef P. Nath and P. K. Sarker, “Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature,” Cement Concrete Comp., 55, 205 – 214 (2015).CrossRef
18.
Zurück zum Zitat H. Güllü, A. Cevik, K. M. A. Al-Ezzi, and M. E. Gülsan, “On the rheology of using geopolymer for grouting: A comparative study with cement-based grout included fly ash and cold bonded fly ash,” Constr. Build. Mater., 196, 594 – 610 (2019).CrossRef H. Güllü, A. Cevik, K. M. A. Al-Ezzi, and M. E. Gülsan, “On the rheology of using geopolymer for grouting: A comparative study with cement-based grout included fly ash and cold bonded fly ash,” Constr. Build. Mater., 196, 594 – 610 (2019).CrossRef
19.
Zurück zum Zitat Z. Zhang, J. L. Provis, A. Reid, and H. Wang, “Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete,” Cement Concrete Comp., 62, 97 – 105 (2015).CrossRef Z. Zhang, J. L. Provis, A. Reid, and H. Wang, “Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete,” Cement Concrete Comp., 62, 97 – 105 (2015).CrossRef
20.
Zurück zum Zitat M. Palacios, M. M. Alonso, C. Varga, and F. Puertas, “Influence of the alkaline solution and temperature on the rheology and reactivity of alkali-activated fly ash pastes,” Cement Concrete Comp., 95, 277 – 284 (2019).CrossRef M. Palacios, M. M. Alonso, C. Varga, and F. Puertas, “Influence of the alkaline solution and temperature on the rheology and reactivity of alkali-activated fly ash pastes,” Cement Concrete Comp., 95, 277 – 284 (2019).CrossRef
21.
Zurück zum Zitat A. Favier, G. Habert, J. B. d’Espinose de Lacaillerie J, and N. Roussel, “Mechanical properties and compositional heterogeneities of fresh geopolymer pastes,” Cement Concrete Res., 48, 9 – 16 (2013). A. Favier, G. Habert, J. B. d’Espinose de Lacaillerie J, and N. Roussel, “Mechanical properties and compositional heterogeneities of fresh geopolymer pastes,” Cement Concrete Res., 48, 9 – 16 (2013).
22.
Zurück zum Zitat D. Hardjito, C. C. Cheak, and C. H. L. Lee, “Strength and setting times of low calcium fly ash-based geopolymer mortar,” Modern Appl. Sci., 2, 3 – 11 (2008).CrossRef D. Hardjito, C. C. Cheak, and C. H. L. Lee, “Strength and setting times of low calcium fly ash-based geopolymer mortar,” Modern Appl. Sci., 2, 3 – 11 (2008).CrossRef
23.
Zurück zum Zitat B. S. K. Reddy, J. Varaprasad, and K. N. K. Reddy, “Strength and workability of low lime fly-ash based geopolymer concrete,” Ind. J. Sci. Technol., 3, 1188–1189 (2010).CrossRef B. S. K. Reddy, J. Varaprasad, and K. N. K. Reddy, “Strength and workability of low lime fly-ash based geopolymer concrete,” Ind. J. Sci. Technol., 3, 1188–1189 (2010).CrossRef
24.
Zurück zum Zitat F. A. Memon, M. F. Nuruddin, S. Khan, et al., “Effect of sodium hydroxide concentration on fresh properties and compressive strength of self-compacting geopolymer concrete,” J. Eng. Sci. Technol., 8, 44 – 56 (2013). F. A. Memon, M. F. Nuruddin, S. Khan, et al., “Effect of sodium hydroxide concentration on fresh properties and compressive strength of self-compacting geopolymer concrete,” J. Eng. Sci. Technol., 8, 44 – 56 (2013).
25.
Zurück zum Zitat D.-W. Zhang, D. Wang, Z. Liu, and F. Xie, “Rheology, agglomerate structure, and particle shape of fresh geopolymer pastes with different NaOH activators content,” Constr. Build. Mater., 187, 674 – 680 (2018).CrossRef D.-W. Zhang, D. Wang, Z. Liu, and F. Xie, “Rheology, agglomerate structure, and particle shape of fresh geopolymer pastes with different NaOH activators content,” Constr. Build. Mater., 187, 674 – 680 (2018).CrossRef
26.
Zurück zum Zitat R. Pouhet, M. Cyr, and R. Bucher, “Influence of the initial water content in flash calcined metakaolin-based geopolymer,” Constr. Build. Mater., 201, 421 – 429 (2019).CrossRef R. Pouhet, M. Cyr, and R. Bucher, “Influence of the initial water content in flash calcined metakaolin-based geopolymer,” Constr. Build. Mater., 201, 421 – 429 (2019).CrossRef
27.
Zurück zum Zitat S. A. Bernal, E. D. Rodríguez, R. M. de Gutiérrez, et al., “Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends,” J. Mater. Sci., 46, 5477 – 5486 (2011).CrossRef S. A. Bernal, E. D. Rodríguez, R. M. de Gutiérrez, et al., “Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends,” J. Mater. Sci., 46, 5477 – 5486 (2011).CrossRef
28.
Zurück zum Zitat R. P. Williams and A. van Riessen, “Determination of the reactive component of fly ashes for geopolymer production using XRF and XRD,” Fuel, 89, 3683 – 3692 (2010).CrossRef R. P. Williams and A. van Riessen, “Determination of the reactive component of fly ashes for geopolymer production using XRF and XRD,” Fuel, 89, 3683 – 3692 (2010).CrossRef
29.
Zurück zum Zitat W. D. A. Rickard, J. Temuujin, and A. van Riessen, “Thermal analysis of geopolymer pastes synthesised from five fly ashes of variable composition,” J. Non-Cryst. Solids, 358, 1830 – 1839 (2012).CrossRef W. D. A. Rickard, J. Temuujin, and A. van Riessen, “Thermal analysis of geopolymer pastes synthesised from five fly ashes of variable composition,” J. Non-Cryst. Solids, 358, 1830 – 1839 (2012).CrossRef
30.
Zurück zum Zitat Y. Zhao, J. Ye, X. Lu, et al., “Preparation of sintered foam materials by alkali-activated coal fly ash,” J. Hazardous Mater., 174, 108 – 112 (2010).CrossRef Y. Zhao, J. Ye, X. Lu, et al., “Preparation of sintered foam materials by alkali-activated coal fly ash,” J. Hazardous Mater., 174, 108 – 112 (2010).CrossRef
31.
Zurück zum Zitat D. L. Y. Kong, J. G. Sanjayan, and K. Sagoe-Crentsil, “Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures,” Cement Concrete Res., 37, 1583 – 1589 (2007).CrossRef D. L. Y. Kong, J. G. Sanjayan, and K. Sagoe-Crentsil, “Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures,” Cement Concrete Res., 37, 1583 – 1589 (2007).CrossRef
32.
Zurück zum Zitat P. Duxson, G. C. Lukey, S. J. Jannie, and J. S. J. van Deventer, “Physical evolution of Na-geopolymer derived from metakaolin up to 1000°C,” J. Mater. Sci., 42, 3044 – 3054 (2007).CrossRef P. Duxson, G. C. Lukey, S. J. Jannie, and J. S. J. van Deventer, “Physical evolution of Na-geopolymer derived from metakaolin up to 1000°C,” J. Mater. Sci., 42, 3044 – 3054 (2007).CrossRef
33.
Zurück zum Zitat V. F. F. Barbosa and K. J. D. MacKenzie, “Synthesis and thermal behaviour of potassium sialate geopolymers,” Mater. Lett., 57, 1477 – 1482 (2003).CrossRef V. F. F. Barbosa and K. J. D. MacKenzie, “Synthesis and thermal behaviour of potassium sialate geopolymers,” Mater. Lett., 57, 1477 – 1482 (2003).CrossRef
34.
Zurück zum Zitat J. L. Bell, P. E. Driemeyer, and W. M. Kriven, “Formation of ceramics from metakaolin-based geopolymers. Part II. K-based geopolymer,” J. Am. Ceram. Soc., 92, 607 – 615 (2009).CrossRef J. L. Bell, P. E. Driemeyer, and W. M. Kriven, “Formation of ceramics from metakaolin-based geopolymers. Part II. K-based geopolymer,” J. Am. Ceram. Soc., 92, 607 – 615 (2009).CrossRef
35.
Zurück zum Zitat L. Dembovska, G. Bumanis, L. Vitola, and D. Bajare, “Influence of fillers on the alkali activated chamotte,” IOP Conf. Series: Mater. Sci. Eng. (2017). L. Dembovska, G. Bumanis, L. Vitola, and D. Bajare, “Influence of fillers on the alkali activated chamotte,” IOP Conf. Series: Mater. Sci. Eng. (2017).
36.
Zurück zum Zitat F. Puertas, C. Varga, and M. M. Alonso, “Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution,” Cement Concrete Comp., 53, 279 – 288 (2014).CrossRef F. Puertas, C. Varga, and M. M. Alonso, “Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution,” Cement Concrete Comp., 53, 279 – 288 (2014).CrossRef
37.
Zurück zum Zitat I. Tekin, “Properties of NaOH activated geopolymer with marble, travertine and volcanic tuff wastes,” Constr. Build. Mater., 127, 607 – 617 (2016).CrossRef I. Tekin, “Properties of NaOH activated geopolymer with marble, travertine and volcanic tuff wastes,” Constr. Build. Mater., 127, 607 – 617 (2016).CrossRef
38.
Zurück zum Zitat S. Lee, A. van Riessen, and C.-M. Chon, “Benefits of sealedcuring on compressive strength of fly ash-based geopolymers,” Materials, 9, 598 (2016).CrossRef S. Lee, A. van Riessen, and C.-M. Chon, “Benefits of sealedcuring on compressive strength of fly ash-based geopolymers,” Materials, 9, 598 (2016).CrossRef
39.
Zurück zum Zitat J. L. Provis, P. Duxson, J. S. J. Van Deventer, and G. C. Lukey, “The role of mathematical modelling and gel chemistry in advancing geopolymer technology,” Chem. Eng. Res. Design, 83, 853 – 860 (2005).CrossRef J. L. Provis, P. Duxson, J. S. J. Van Deventer, and G. C. Lukey, “The role of mathematical modelling and gel chemistry in advancing geopolymer technology,” Chem. Eng. Res. Design, 83, 853 – 860 (2005).CrossRef
40.
Zurück zum Zitat T. Pyatina and T. Sugama, “Set controlling additive for thermal- shock resistant cement,” GRC Trans., 38, 251 – 257 (2014). T. Pyatina and T. Sugama, “Set controlling additive for thermal- shock resistant cement,” GRC Trans., 38, 251 – 257 (2014).
41.
Zurück zum Zitat A. Fernández-Jiménez, J. Y. Pastor, A. Martýn, and A. Palomo, “High-temperature resistance in alkali-activated cement,” J. Am. Ceram. Soc., 93(10), 3411 – 3417 (2010).CrossRef A. Fernández-Jiménez, J. Y. Pastor, A. Martýn, and A. Palomo, “High-temperature resistance in alkali-activated cement,” J. Am. Ceram. Soc., 93(10), 3411 – 3417 (2010).CrossRef
Metadaten
Titel
Effect of Molarity and Temperature of Alkaline Activator Solution on the Rheological Properties and Structure Formation of Alkali-Activated Refractory Materials
verfasst von
I. Pundiene
I. Pranckeviciene
Ch. Zhu
Publikationsdatum
25.05.2020
Verlag
Springer US
Erschienen in
Glass and Ceramics / Ausgabe 1-2/2020
Print ISSN: 0361-7610
Elektronische ISSN: 1573-8515
DOI
https://doi.org/10.1007/s10717-020-00236-1

Weitere Artikel der Ausgabe 1-2/2020

Glass and Ceramics 1-2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.