Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2013

01.03.2013

Effect of Nanoclay Reinforcement on the Friction Braking Performance of Hybrid Phenolic Friction Composites

verfasst von: Tej Singh, Amar Patnaik, Bhabani K. Satapathy, Mukesh Kumar, Bharat S. Tomar

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Friction composite formulation consisting of decreasing nanoclay/lapinus fibres content, increasing graphite/aramid fibres content, and master batch of phenolic/barite is designed, fabricated, and characterized for their mechanical, thermo-mechanical, and tribological studies in braking situations. A standard test protocol is adopted for evaluating braking performance. The nanoclay content (≤2.25 wt.%) enhances hardness, impact strength, storage, and loss modulus characteristics of the friction composites. Such composites exhibit higher friction stability as well as variability coefficient. However, composites with higher content of nanoclay (~2.75 wt.%) exhibit moderate level of stability coefficient and minimum variability coefficient. Fade performance improves with nanoclay content whereas friction fluctuations increase continuously with increasing nanoclay content. The disc temperature continuously rises with nanoclay contents, it becomes maximum for nanoclay content 2.75 wt.%. The same composition found to be effective in arresting temperature rise, arrests fading, improves recovery, moderate stability with minimum variability coefficient, and higher level of μ-performance hence recommended. The wear performance deteriorates with lapinus/nanoclay content and improves with the amount of aramid/graphite in the friction composites. Worn surface morphology study (using SEM) reveals the associated wear mechanisms responsible for wear of investigated composites. XRD study confirms the presence and dispersion of nanoclay with other composite ingredients.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Chan and G.W. Stachowiak, Review of Automotive Brake Friction Materials, Proc. Inst. Mech. Eng. D, 2004, 218(9), p 953–966CrossRef D. Chan and G.W. Stachowiak, Review of Automotive Brake Friction Materials, Proc. Inst. Mech. Eng. D, 2004, 218(9), p 953–966CrossRef
2.
Zurück zum Zitat B.K. Satapathy, Performance Analysis of Non-Asbestos Fibre Reinforced Organic Friction Materials, Ph.D Thesis, IIT Delhi, India, 2002 B.K. Satapathy, Performance Analysis of Non-Asbestos Fibre Reinforced Organic Friction Materials, Ph.D Thesis, IIT Delhi, India, 2002
3.
Zurück zum Zitat N. Dadkar, B.S. Tomar, B.K. Satapathy, and A. Patnaik, Performance Assessment of Hybrid Composite Friction Materials Based on Fly Ash Rock Fibre Combination, Mater. Des., 2010, 31, p 723–731CrossRef N. Dadkar, B.S. Tomar, B.K. Satapathy, and A. Patnaik, Performance Assessment of Hybrid Composite Friction Materials Based on Fly Ash Rock Fibre Combination, Mater. Des., 2010, 31, p 723–731CrossRef
4.
Zurück zum Zitat Y. Han, X. Tian, and Y. Yin, Effect of Ceramic Fiber on the Friction Performance of Automotive Brake Lining Materials, Tribol Trans., 2008, 51, p 779–783CrossRef Y. Han, X. Tian, and Y. Yin, Effect of Ceramic Fiber on the Friction Performance of Automotive Brake Lining Materials, Tribol Trans., 2008, 51, p 779–783CrossRef
5.
Zurück zum Zitat A. Patnaik, M. Kumar, B.K. Satapathy, and B.S. Tomar, Performance Sensitivity of Hybrid Phenolic Composites in Friction Braking: Effect of Ceramic and Aramid Fibre Combination, Wear, 2012, 269(11–12), p 891–899 A. Patnaik, M. Kumar, B.K. Satapathy, and B.S. Tomar, Performance Sensitivity of Hybrid Phenolic Composites in Friction Braking: Effect of Ceramic and Aramid Fibre Combination, Wear, 2012, 269(11–12), p 891–899
6.
Zurück zum Zitat M. Kumar, B.K. Satapathy, A. Patnaik, D.K. Kolluri, and B.S. Tomar, Hybrid Composite Friction Materials Reinforced with Combination of Potassium Titanate Whiskers and Aramid Fibre: Assessment of Fade and Recovery Performance, Tribol Int., 2011, 44(4), p 359–367CrossRef M. Kumar, B.K. Satapathy, A. Patnaik, D.K. Kolluri, and B.S. Tomar, Hybrid Composite Friction Materials Reinforced with Combination of Potassium Titanate Whiskers and Aramid Fibre: Assessment of Fade and Recovery Performance, Tribol Int., 2011, 44(4), p 359–367CrossRef
7.
Zurück zum Zitat M. Kumar, B.K. Satapathy, A. Patnaik, D.K. Kolluri, and B.S. Tomar, Friction-Fade and Friction-Recovery Behavior of Hybrid Friction Composites Based on Ternary Combination of Ceramic-Fibres, Ceramic-Whiskers and Aramid-Fibres, J. Appl. Polym. Sci., 2012, 124(5), p 3650–3661CrossRef M. Kumar, B.K. Satapathy, A. Patnaik, D.K. Kolluri, and B.S. Tomar, Friction-Fade and Friction-Recovery Behavior of Hybrid Friction Composites Based on Ternary Combination of Ceramic-Fibres, Ceramic-Whiskers and Aramid-Fibres, J. Appl. Polym. Sci., 2012, 124(5), p 3650–3661CrossRef
8.
Zurück zum Zitat H.J. Hwang, S.L. Jung, K.H. Cho, Y.J. Kim, and H. Jang, Tribological Performance of Brake Friction Materials Containing Carbon Nanotubes, Wear, 2010, 268, p 519–525CrossRef H.J. Hwang, S.L. Jung, K.H. Cho, Y.J. Kim, and H. Jang, Tribological Performance of Brake Friction Materials Containing Carbon Nanotubes, Wear, 2010, 268, p 519–525CrossRef
9.
Zurück zum Zitat T. Singh, A. Patnaik, and B.K. Satapathy, Effect of Carbon Nanotube on Tribo-Performance of Brake Friction Materials, Proceedings of ICACNM International Conferences on Advances in Condensed and Nanomaterials, Vol. 1393, 2011, p 223–224. doi:http://dx.doi.org/10.1063/1.3653690 T. Singh, A. Patnaik, and B.K. Satapathy, Effect of Carbon Nanotube on Tribo-Performance of Brake Friction Materials, Proceedings of ICACNM International Conferences on Advances in Condensed and Nanomaterials, Vol. 1393, 2011, p 223–224. doi:http://​dx.​doi.​org/​10.​1063/​1.​3653690
10.
Zurück zum Zitat Y. Liu, Z. Fan, H. Ma, Y. Tan, and T. Qiao, Application of Nano Powdered Rubber in Friction Materials, Wear, 2006, 261, p 225–229CrossRef Y. Liu, Z. Fan, H. Ma, Y. Tan, and T. Qiao, Application of Nano Powdered Rubber in Friction Materials, Wear, 2006, 261, p 225–229CrossRef
11.
Zurück zum Zitat M. Alexandre and P. Dubois, Polymer Layered Silicate Nanocomposites: Preparation Properties and Uses of a New Class of Materials, Mater. Sci. Eng. R, 2000, 28(1–2), p 1–63CrossRef M. Alexandre and P. Dubois, Polymer Layered Silicate Nanocomposites: Preparation Properties and Uses of a New Class of Materials, Mater. Sci. Eng. R, 2000, 28(1–2), p 1–63CrossRef
12.
Zurück zum Zitat C. Deshmane, Q. Yuan, R.S. Perkins, and R.D.K. Mishra, On Striking Variation on Impact Toughness of Polyethylene-Clay and Polypropylene-Clay Nanocomposites Systems: The Effect of Clay Polymer Interaction, Mater. Sci. Eng., A, 2007, 458(1–2), p 150–157 C. Deshmane, Q. Yuan, R.S. Perkins, and R.D.K. Mishra, On Striking Variation on Impact Toughness of Polyethylene-Clay and Polypropylene-Clay Nanocomposites Systems: The Effect of Clay Polymer Interaction, Mater. Sci. Eng., A, 2007, 458(1–2), p 150–157
13.
Zurück zum Zitat Y. Kojima, A. Usiki, M. Kawasumi, A. Okada, Y. Fukushima, and T. Karauchi, Mechanical Properties of Nylon 6-Clay Hybrid, J. Mater. Res., 1993, 8, p 1185–1189CrossRef Y. Kojima, A. Usiki, M. Kawasumi, A. Okada, Y. Fukushima, and T. Karauchi, Mechanical Properties of Nylon 6-Clay Hybrid, J. Mater. Res., 1993, 8, p 1185–1189CrossRef
14.
Zurück zum Zitat I.Y. Phang, T. Liu, A. Mohamed, K.P. Pramoda, L. Chen, and L. Shen, Morphology, Thermal and Mechanical Properties of Nylon-12/Organoclay Nanocomposites Prepared by Melt Compounding, Polym. Int., 2005, 54(2), p 456–464CrossRef I.Y. Phang, T. Liu, A. Mohamed, K.P. Pramoda, L. Chen, and L. Shen, Morphology, Thermal and Mechanical Properties of Nylon-12/Organoclay Nanocomposites Prepared by Melt Compounding, Polym. Int., 2005, 54(2), p 456–464CrossRef
15.
Zurück zum Zitat P. Jawahar, R. Gnanamoorthy, and M. Balasubramanian, Tribological Behavior of Clay Thermoset Polyester Nano-Composites, Wear, 2006, 261, p 835–840CrossRef P. Jawahar, R. Gnanamoorthy, and M. Balasubramanian, Tribological Behavior of Clay Thermoset Polyester Nano-Composites, Wear, 2006, 261, p 835–840CrossRef
16.
Zurück zum Zitat K. Kanny, P. Jawahar, and V.K. Moodley, Mechanical and Tribological Behavior of Clay-Polypropylene Nanocomposites, J. Mater. Sci., 2008, 43(22), p 7230–7238CrossRef K. Kanny, P. Jawahar, and V.K. Moodley, Mechanical and Tribological Behavior of Clay-Polypropylene Nanocomposites, J. Mater. Sci., 2008, 43(22), p 7230–7238CrossRef
17.
Zurück zum Zitat Q.-Y. Peng, P.-H. Cong, X.-J. Liu, T.-X. Liu, S. Huang, and T.-S. Li, The Preparation of PVDF/Clay Nanocomposites and the Investigation of their Tribological Properties, Wear, 2009, 266, p 713–720CrossRef Q.-Y. Peng, P.-H. Cong, X.-J. Liu, T.-X. Liu, S. Huang, and T.-S. Li, The Preparation of PVDF/Clay Nanocomposites and the Investigation of their Tribological Properties, Wear, 2009, 266, p 713–720CrossRef
18.
Zurück zum Zitat J.S. Chen, P.D. Mark, O.K. Christopher, Z. Yuanming, U. Wiesner, and E. Giannelis, Study of the Interlayer Expansion Mechanism and Thermal-Mechanical Properties of Surface-Initiated Epoxy Nanocomposites, Polymers, 2009, 43, p 4895–4904 J.S. Chen, P.D. Mark, O.K. Christopher, Z. Yuanming, U. Wiesner, and E. Giannelis, Study of the Interlayer Expansion Mechanism and Thermal-Mechanical Properties of Surface-Initiated Epoxy Nanocomposites, Polymers, 2009, 43, p 4895–4904
19.
Zurück zum Zitat S. Bahadur and C. Sunkara, Effect of Transfer Film Structure, Composition and Bonding on the Tribological Behavior of Polyphenylene Sulfide Filled with Nanoparticles of TiO2 ZnO, CuO and SiC, Wear, 2005, 258, p 1411–1421CrossRef S. Bahadur and C. Sunkara, Effect of Transfer Film Structure, Composition and Bonding on the Tribological Behavior of Polyphenylene Sulfide Filled with Nanoparticles of TiO2 ZnO, CuO and SiC, Wear, 2005, 258, p 1411–1421CrossRef
20.
Zurück zum Zitat S. Guang, Q.Z. Ming, Z.R. Min, W. Bernd, and F. Klaus, Friction and Wear of Low Nanometer Si3N4 Filled Epoxy Composites, Wear, 2003, 254, p 784–796CrossRef S. Guang, Q.Z. Ming, Z.R. Min, W. Bernd, and F. Klaus, Friction and Wear of Low Nanometer Si3N4 Filled Epoxy Composites, Wear, 2003, 254, p 784–796CrossRef
21.
Zurück zum Zitat S. Pavlidou and C.D. Papaspyrides, A Review on Polymer Layered Silicate Nano-Composites, Prog. Polym. Sci., 2008, 33, p 1119–1198CrossRef S. Pavlidou and C.D. Papaspyrides, A Review on Polymer Layered Silicate Nano-Composites, Prog. Polym. Sci., 2008, 33, p 1119–1198CrossRef
22.
Zurück zum Zitat S. Bahadur, The Development of Transfer Layers and their Role in Polymer Tribology, Wear, 2000, 245(1–2), p 92–99CrossRef S. Bahadur, The Development of Transfer Layers and their Role in Polymer Tribology, Wear, 2000, 245(1–2), p 92–99CrossRef
23.
Zurück zum Zitat P. Filip, Z. Weiss, and D. Rafaja, On Friction Layer Formation in Polymer Matrix Composite Materials for Brake Applications, Wear, 2002, 252, p 189–198CrossRef P. Filip, Z. Weiss, and D. Rafaja, On Friction Layer Formation in Polymer Matrix Composite Materials for Brake Applications, Wear, 2002, 252, p 189–198CrossRef
24.
Zurück zum Zitat W. Österle and I. Urban, Friction Layers and Friction Films on PMC Brake Pads, Wear, 2004, 257, p 215–226CrossRef W. Österle and I. Urban, Friction Layers and Friction Films on PMC Brake Pads, Wear, 2004, 257, p 215–226CrossRef
25.
Zurück zum Zitat B. Bhushan, T. Kasai, C.V. Nguyen, and M. Meyyappan, Multiwalled Carbon Nanotube AFM Probes for Surface Characterization of Micro/Nanostructures, Microsyst. Technol., 2004, 10, p 633–639CrossRef B. Bhushan, T. Kasai, C.V. Nguyen, and M. Meyyappan, Multiwalled Carbon Nanotube AFM Probes for Surface Characterization of Micro/Nanostructures, Microsyst. Technol., 2004, 10, p 633–639CrossRef
26.
Zurück zum Zitat J. Xian and L. Xiaomei, Friction and Wear Characteristics of Polymer Matrix Friction Materials Reinforced by Brass Fibers, J. Mater. Eng. Perform., 2004, 13, p 642–646CrossRef J. Xian and L. Xiaomei, Friction and Wear Characteristics of Polymer Matrix Friction Materials Reinforced by Brass Fibers, J. Mater. Eng. Perform., 2004, 13, p 642–646CrossRef
27.
Zurück zum Zitat P.J. Blau, Microstructure and Detachment Mechanism of Friction Layers on the Surface of Brake Shoes, J. Mater. Eng. Perform., 2003, 12, p 56–60CrossRef P.J. Blau, Microstructure and Detachment Mechanism of Friction Layers on the Surface of Brake Shoes, J. Mater. Eng. Perform., 2003, 12, p 56–60CrossRef
28.
Zurück zum Zitat U. Ozsarac, Investigation of Mechanical Properties of Galvanized Automotive Sheets Joined by Resistance Spot Welding, J. Mater. Eng. Perform., 2012, doi:10.1007/s11665-012-0189-0 U. Ozsarac, Investigation of Mechanical Properties of Galvanized Automotive Sheets Joined by Resistance Spot Welding, J. Mater. Eng. Perform., 2012, doi:10.​1007/​s11665-012-0189-0
Metadaten
Titel
Effect of Nanoclay Reinforcement on the Friction Braking Performance of Hybrid Phenolic Friction Composites
verfasst von
Tej Singh
Amar Patnaik
Bhabani K. Satapathy
Mukesh Kumar
Bharat S. Tomar
Publikationsdatum
01.03.2013
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2013
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-012-0325-x

Weitere Artikel der Ausgabe 3/2013

Journal of Materials Engineering and Performance 3/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.