Skip to main content
Erschienen in: Journal of Materials Science 13/2019

09.04.2019 | Energy materials

Effect of RGO coating on lithium storage performance of monodispersed core–shell MoS2 superspheres

verfasst von: Feilong Gong, Lifang Peng, Mengmeng Liu, Erchao Meng, Feng Li

Erschienen in: Journal of Materials Science | Ausgabe 13/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of reduced graphene oxide coating on the electrochemical performance of monodispersed core–shell MoS2 spheres has been presented. The 3D nanoarchitectures constructed with 2D MoS2 and RGO nanosheets can be applied to assemble anodes with highly enhanced capacity in storing lithium. The amount of reduced graphene oxide nanosheets can dramatically affect the electrochemical properties of as-prepared 3D nanoarchitectures. Specifically, the MoS2 anode materials with ~ 7 wt% of reduced graphene oxide exhibit the highest average specific capacity of ~ 1134 mAh g−1 at 100 mA g−1, and it recovers up to 89.2% after performing discharge–charge at 2000 mA g−1. The discharge capacity of the electrode can retain ~ 88.9% of its second discharge capacity after cycling for 100 times at 200 mA g−1 and keep ~ 98.3% of its average Coulombic efficiency after the first cycle. The cells also possess high rate with specific capacity of ~ 739 mAh g−1 even at 1000 mA g−1.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRef Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRef
2.
Zurück zum Zitat Park SY, Baek WJ, Lee SY, Seo JA, Kang YS, Koh M, Kim SH (2018) Probing electrical degradation of cathode materials for lithium-ion batteries with nanoscale resolution. Nano Energy 49:1–6CrossRef Park SY, Baek WJ, Lee SY, Seo JA, Kang YS, Koh M, Kim SH (2018) Probing electrical degradation of cathode materials for lithium-ion batteries with nanoscale resolution. Nano Energy 49:1–6CrossRef
3.
Zurück zum Zitat An Q, Lv F, Liu Q, Han C, Zhao K, Sheng J, Wei Q, Yan M, Mai L (2014) Amorphous vanadium oxide matrixes supporting hierarchical porous Fe3O4/graphene nanowires as a high-rate lithium storage anode. Nano Lett 14:6250–6256CrossRef An Q, Lv F, Liu Q, Han C, Zhao K, Sheng J, Wei Q, Yan M, Mai L (2014) Amorphous vanadium oxide matrixes supporting hierarchical porous Fe3O4/graphene nanowires as a high-rate lithium storage anode. Nano Lett 14:6250–6256CrossRef
4.
Zurück zum Zitat Mahmood N, Zhang CZ, Liu F, Zhu JH, Hou YL (2013) Hybrid of Co3Sn2@Co nanoparticles and nitrogen-doped graphene as a lithium ion battery anode. ACS Nano 7:10307–10318CrossRef Mahmood N, Zhang CZ, Liu F, Zhu JH, Hou YL (2013) Hybrid of Co3Sn2@Co nanoparticles and nitrogen-doped graphene as a lithium ion battery anode. ACS Nano 7:10307–10318CrossRef
5.
Zurück zum Zitat Liu Y, He X, Hanlon D, Harvey A, Coleman JN, Li Y (2016) Liquid phase exfoliated MoS2 nanosheets percolated with carbon nanotubes for high volumetric/areal capacity sodium-ion batteries. ACS Nano 10:8821–8828CrossRef Liu Y, He X, Hanlon D, Harvey A, Coleman JN, Li Y (2016) Liquid phase exfoliated MoS2 nanosheets percolated with carbon nanotubes for high volumetric/areal capacity sodium-ion batteries. ACS Nano 10:8821–8828CrossRef
6.
Zurück zum Zitat David L, Bhandavat R, Singh G (2014) MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8:1759–1770CrossRef David L, Bhandavat R, Singh G (2014) MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8:1759–1770CrossRef
7.
Zurück zum Zitat Shi ZT, Kang WP, Xu J, Sun YW, Jiang M, Ng TW, Xue HT, Yu DYW, Zhang WJ, Lee CS (2016) Hierarchical nanotubes assembled from MoS2-carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries. Nano Energy 22:27–37CrossRef Shi ZT, Kang WP, Xu J, Sun YW, Jiang M, Ng TW, Xue HT, Yu DYW, Zhang WJ, Lee CS (2016) Hierarchical nanotubes assembled from MoS2-carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries. Nano Energy 22:27–37CrossRef
8.
Zurück zum Zitat Shan TT, Xin S, You Y, Cong HP, Yu SH, Manthiram A (2016) Combining nitrogen-doped graphene sheets and MoS2: a unique film-foam-film structure for enhanced lithium storage. Angew Chem Int Ed 55:12783–12788CrossRef Shan TT, Xin S, You Y, Cong HP, Yu SH, Manthiram A (2016) Combining nitrogen-doped graphene sheets and MoS2: a unique film-foam-film structure for enhanced lithium storage. Angew Chem Int Ed 55:12783–12788CrossRef
9.
Zurück zum Zitat Chen BA, Liu EZ, Cao TT, He F, Shi CS, He CN, Ma LY, Li QY, Li JJ, Zhao NQ (2017) Controllable graphene incorporation and defect engineering in MoS2-TiO2 based composites: towards high-performance lithium-ion batteries anode materials. Nano Energy 33:247–256CrossRef Chen BA, Liu EZ, Cao TT, He F, Shi CS, He CN, Ma LY, Li QY, Li JJ, Zhao NQ (2017) Controllable graphene incorporation and defect engineering in MoS2-TiO2 based composites: towards high-performance lithium-ion batteries anode materials. Nano Energy 33:247–256CrossRef
10.
Zurück zum Zitat Li YF, Liang YL, Hernandez FCR, Yoo HD, An QY, Yao Y (2015) Enhancing sodium-ion battery performance with interlayer-expanded MoS2-PEO nanocomposites. Nano Energy 15:453–461CrossRef Li YF, Liang YL, Hernandez FCR, Yoo HD, An QY, Yao Y (2015) Enhancing sodium-ion battery performance with interlayer-expanded MoS2-PEO nanocomposites. Nano Energy 15:453–461CrossRef
11.
Zurück zum Zitat Wang B, Zhang Y, Zhang J, Xia R, Chu Y, Zhou J, Yang X, Huang J (2017) Facile synthesis of a MoS2 and functionalized graphene heterostructure for enhanced lithium-storage performance. ACS Appl Mater Interfaces 9:12907–12913CrossRef Wang B, Zhang Y, Zhang J, Xia R, Chu Y, Zhou J, Yang X, Huang J (2017) Facile synthesis of a MoS2 and functionalized graphene heterostructure for enhanced lithium-storage performance. ACS Appl Mater Interfaces 9:12907–12913CrossRef
12.
Zurück zum Zitat Ejigu A, Kinloch IA, Prestat E, Dryfe RAW (2017) A simple electrochemical route to metallic phase trilayer MoS2: evaluation as electrocatalysts and supercapacitors. J Mater Chem A 5:11316–11330CrossRef Ejigu A, Kinloch IA, Prestat E, Dryfe RAW (2017) A simple electrochemical route to metallic phase trilayer MoS2: evaluation as electrocatalysts and supercapacitors. J Mater Chem A 5:11316–11330CrossRef
13.
Zurück zum Zitat Loh KP, Zhang H, Chen WZ, Ji W (2006) Templated deposition of MoS2 nanotubules using single source precursor and studies of their optical limiting properties. J Phys Chem B 110:1235–1239CrossRef Loh KP, Zhang H, Chen WZ, Ji W (2006) Templated deposition of MoS2 nanotubules using single source precursor and studies of their optical limiting properties. J Phys Chem B 110:1235–1239CrossRef
14.
Zurück zum Zitat Wang PP, Sun H, Ji Y, Li W, Wang X (2014) Three-dimensional assembly of single-layered MoS2. Adv Mater 26:964–969CrossRef Wang PP, Sun H, Ji Y, Li W, Wang X (2014) Three-dimensional assembly of single-layered MoS2. Adv Mater 26:964–969CrossRef
15.
Zurück zum Zitat Chen YM, Yu XY, Li Z, Paik U, Lou XW (2016) Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries. Sci Adv 2:e1600021–e1600028CrossRef Chen YM, Yu XY, Li Z, Paik U, Lou XW (2016) Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries. Sci Adv 2:e1600021–e1600028CrossRef
16.
Zurück zum Zitat Liu N, Kim P, Kim JH, Ye JH, Kim S, Lee CJ (2014) Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation. ACS Nano 8:6902–6910CrossRef Liu N, Kim P, Kim JH, Ye JH, Kim S, Lee CJ (2014) Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation. ACS Nano 8:6902–6910CrossRef
17.
Zurück zum Zitat Chen B, Lu HH, Zhao NQ, Shi CS, Liu EZ, He CN, Ma LY (2018) Facile synthesis and electrochemical properties of continuous porous spheres assembled from defect-rich, interlayer-expanded, and few-layered MoS2/C nanosheets for reversible lithium storage. J Power Sources 387:16–23CrossRef Chen B, Lu HH, Zhao NQ, Shi CS, Liu EZ, He CN, Ma LY (2018) Facile synthesis and electrochemical properties of continuous porous spheres assembled from defect-rich, interlayer-expanded, and few-layered MoS2/C nanosheets for reversible lithium storage. J Power Sources 387:16–23CrossRef
18.
Zurück zum Zitat Zhao ZH, Hu XD, Wang HQ, Ye MY, Sang ZY, Ji HM, Li XL, Dai YJ (2018) Superelastic 3D few-layer MoS2/carbon framework heterogeneous electrodes for highly reversible sodium-ion batteries. Nano Energy 48:526–535CrossRef Zhao ZH, Hu XD, Wang HQ, Ye MY, Sang ZY, Ji HM, Li XL, Dai YJ (2018) Superelastic 3D few-layer MoS2/carbon framework heterogeneous electrodes for highly reversible sodium-ion batteries. Nano Energy 48:526–535CrossRef
19.
Zurück zum Zitat Zhang S, Chowdari BVR, Wen Z, Jin J, Yang J (2015) Constructing highly oriented configuration by few-layer MoS2: toward high-performance lithium-ion batteries and hydrogen evolution reactions. ACS Nano 9:12464–12472CrossRef Zhang S, Chowdari BVR, Wen Z, Jin J, Yang J (2015) Constructing highly oriented configuration by few-layer MoS2: toward high-performance lithium-ion batteries and hydrogen evolution reactions. ACS Nano 9:12464–12472CrossRef
20.
Zurück zum Zitat Hu Z, Wang LX, Zhang K, Wang JB, Cheng FY, Tao ZL, Chen J (2014) MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew Chem Int Ed 53:12794–12798CrossRef Hu Z, Wang LX, Zhang K, Wang JB, Cheng FY, Tao ZL, Chen J (2014) MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew Chem Int Ed 53:12794–12798CrossRef
21.
Zurück zum Zitat Ren WN, Zhou WW, Zhang HF, Cheng CW (2017) ALD TiO2-coated flower-like MoS2 nanosheets on carbon cloth as sodium ion battery anode with enhanced cycling stability and rate capability. ACS Appl Mater Interfaces 9:487–495CrossRef Ren WN, Zhou WW, Zhang HF, Cheng CW (2017) ALD TiO2-coated flower-like MoS2 nanosheets on carbon cloth as sodium ion battery anode with enhanced cycling stability and rate capability. ACS Appl Mater Interfaces 9:487–495CrossRef
22.
Zurück zum Zitat Wang M, Li GD, Xu HY, Qian YT, Yang J (2013) Enhanced lithium storage performances of hierarchical hollow MoS2 nanoparticles assembled from nanosheets. ACS Appl Mater Interfaces 5:1003–1008CrossRef Wang M, Li GD, Xu HY, Qian YT, Yang J (2013) Enhanced lithium storage performances of hierarchical hollow MoS2 nanoparticles assembled from nanosheets. ACS Appl Mater Interfaces 5:1003–1008CrossRef
23.
Zurück zum Zitat Yun Q, Lu Q, Zhang X, Tan C, Zhang H (2018) Three-dimensional architectures constructed from transition-metal dichalcogenide nanomaterials for electrochemical energy storage and conversion. Angew Chem Int Ed 57:626–646CrossRef Yun Q, Lu Q, Zhang X, Tan C, Zhang H (2018) Three-dimensional architectures constructed from transition-metal dichalcogenide nanomaterials for electrochemical energy storage and conversion. Angew Chem Int Ed 57:626–646CrossRef
24.
Zurück zum Zitat Wang YW, Yu L, Lou XW (2016) Synthesis of highly uniform molybdenum-glycerate spheres and their conversion into hierarchical MoS2 hollow nanospheres for lithium-ion batteries. Angew Chem Int Ed 55:7423–7426CrossRef Wang YW, Yu L, Lou XW (2016) Synthesis of highly uniform molybdenum-glycerate spheres and their conversion into hierarchical MoS2 hollow nanospheres for lithium-ion batteries. Angew Chem Int Ed 55:7423–7426CrossRef
25.
Zurück zum Zitat Zhang L, Wu HB, Yan Y, Wang X, Lou XW (2014) Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting. Energy Environ Sci 7:3302–3306CrossRef Zhang L, Wu HB, Yan Y, Wang X, Lou XW (2014) Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting. Energy Environ Sci 7:3302–3306CrossRef
26.
Zurück zum Zitat Chen Y, Hu Y, Shen Z, Chen R, He X, Zhang X, Li Y, Wu K (2017) Hollow core-shell structured silicon@carbon nanoparticles embed in carbon nanofibers as binder-free anodes for lithium-ion batteries. J Power Sources 342:467–475CrossRef Chen Y, Hu Y, Shen Z, Chen R, He X, Zhang X, Li Y, Wu K (2017) Hollow core-shell structured silicon@carbon nanoparticles embed in carbon nanofibers as binder-free anodes for lithium-ion batteries. J Power Sources 342:467–475CrossRef
27.
Zurück zum Zitat Zuo XX, Chang K, Zhao J, Xie ZZ, Tang HW, Li B, Chang ZR (2016) Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material. J Mater Chem A 4:51–58CrossRef Zuo XX, Chang K, Zhao J, Xie ZZ, Tang HW, Li B, Chang ZR (2016) Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material. J Mater Chem A 4:51–58CrossRef
28.
Zurück zum Zitat Zhou L, Zhuang Z, Zhao H, Lin M, Zhao D, Mai L (2017) Intricate hollow structures: controlled synthesis and applications in energy storage and conversion. Adv Mater 29:1602914–1602942CrossRef Zhou L, Zhuang Z, Zhao H, Lin M, Zhao D, Mai L (2017) Intricate hollow structures: controlled synthesis and applications in energy storage and conversion. Adv Mater 29:1602914–1602942CrossRef
29.
Zurück zum Zitat Tan C, Luo Z, Chaturvedi A, Cai Y, Du Y, Gong Y, Huang Y, Lai Z, Zhang X, Zheng L, Qi X, Goh MH, Wang J, Han S, Wu XJ, Gu L, Kloc C, Zhang H (2018) Preparation of high-percentage 1T-phase transition metal dichalcogenide nanodots for electrochemical hydrogen evolution. Adv Mater 30:1602914–1602942 Tan C, Luo Z, Chaturvedi A, Cai Y, Du Y, Gong Y, Huang Y, Lai Z, Zhang X, Zheng L, Qi X, Goh MH, Wang J, Han S, Wu XJ, Gu L, Kloc C, Zhang H (2018) Preparation of high-percentage 1T-phase transition metal dichalcogenide nanodots for electrochemical hydrogen evolution. Adv Mater 30:1602914–1602942
30.
Zurück zum Zitat Acerce M, Voiry D, Chhowalla M (2015) Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat Nanotechnol 10:313–318CrossRef Acerce M, Voiry D, Chhowalla M (2015) Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat Nanotechnol 10:313–318CrossRef
31.
Zurück zum Zitat Jiao YC, Mukhopadhyay A, Ma Y, Yang L, Hafez AM, Zhu HL (2018) Ion transport nanotube assembled with vertically aligned metallic MoS2 for high rate lithium-ion batteries. Adv Energy Mater 8:91702779–91702787 Jiao YC, Mukhopadhyay A, Ma Y, Yang L, Hafez AM, Zhu HL (2018) Ion transport nanotube assembled with vertically aligned metallic MoS2 for high rate lithium-ion batteries. Adv Energy Mater 8:91702779–91702787
32.
Zurück zum Zitat Xiao Y, Cao Y, Gong Y, Zhang A, Zhao J, Fang S, Jia D, Li F (2014) Electrolyte and composition effects on the performances of asymmetric supercapacitors constructed with Mn3O4 nanoparticles-graphene nanocomposites. J Power Sources 246:926–933CrossRef Xiao Y, Cao Y, Gong Y, Zhang A, Zhao J, Fang S, Jia D, Li F (2014) Electrolyte and composition effects on the performances of asymmetric supercapacitors constructed with Mn3O4 nanoparticles-graphene nanocomposites. J Power Sources 246:926–933CrossRef
33.
Zurück zum Zitat Xiao Y, Liu S, Li F, Zhang A, Zhao J, Fang S, Jia D (2012) 3D hierarchical Co3O4 twin-Spheres with an urchin-Like structure: large-scale synthesis, multistep-splitting growth, and electrochemical pseudocapacitors. Adv Funct Mater 22:4052–4059CrossRef Xiao Y, Liu S, Li F, Zhang A, Zhao J, Fang S, Jia D (2012) 3D hierarchical Co3O4 twin-Spheres with an urchin-Like structure: large-scale synthesis, multistep-splitting growth, and electrochemical pseudocapacitors. Adv Funct Mater 22:4052–4059CrossRef
34.
Zurück zum Zitat Meng E, Zhang M, Hu Y, Gong F, Zhang L, Li F (2018) Solid-state attachments of Ag nanoparticles onto the surfaces of LiFePO4 cathode materials for Li storage with enhanced capabilities. Electrochim Acta 265:160–165CrossRef Meng E, Zhang M, Hu Y, Gong F, Zhang L, Li F (2018) Solid-state attachments of Ag nanoparticles onto the surfaces of LiFePO4 cathode materials for Li storage with enhanced capabilities. Electrochim Acta 265:160–165CrossRef
35.
Zurück zum Zitat Yan LJ, Luo NN, Kong WB, Luo S, Wu HC, Jiang KL, Li QQ, Fan SS, Duan WH, Wang JP (2018) Enhanced performance of lithium-sulfur batteries with an ultrathin and lightweight MoS2/carbon nanotube interlayer. J Power Sources 389:169–177CrossRef Yan LJ, Luo NN, Kong WB, Luo S, Wu HC, Jiang KL, Li QQ, Fan SS, Duan WH, Wang JP (2018) Enhanced performance of lithium-sulfur batteries with an ultrathin and lightweight MoS2/carbon nanotube interlayer. J Power Sources 389:169–177CrossRef
36.
Zurück zum Zitat Zhang ZJ, Zhao HL, Teng YQ, Chang XW, Xia Q, Li ZL, Fang JJ, Du ZH, Swierczek K (2018) Carbon-sheathed MoS2 nanothorns epitaxially grown on CNTs: electrochemical application for highly stable and ultrafast lithium storage. Adv Energy Mater 8:1700174–1700184CrossRef Zhang ZJ, Zhao HL, Teng YQ, Chang XW, Xia Q, Li ZL, Fang JJ, Du ZH, Swierczek K (2018) Carbon-sheathed MoS2 nanothorns epitaxially grown on CNTs: electrochemical application for highly stable and ultrafast lithium storage. Adv Energy Mater 8:1700174–1700184CrossRef
37.
Zurück zum Zitat Sun D, Ye DL, Liu P, Tang YG, Guo J, Wang LZ, Wang HY (2018) MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries. Adv Energy Mater 8:1702383–1702393CrossRef Sun D, Ye DL, Liu P, Tang YG, Guo J, Wang LZ, Wang HY (2018) MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries. Adv Energy Mater 8:1702383–1702393CrossRef
38.
Zurück zum Zitat Xiong F, Cai Z, Qu L, Zhang P, Yuan Z, Asare OK, Xu W, Lin C, Mai L (2015) Three-dimensional crumpled reduced graphene oxide/MoS2 nanoflowers: a stable anode for lithium-ion batteries. ACS Appl Mater Interfaces 7:12625–12630CrossRef Xiong F, Cai Z, Qu L, Zhang P, Yuan Z, Asare OK, Xu W, Lin C, Mai L (2015) Three-dimensional crumpled reduced graphene oxide/MoS2 nanoflowers: a stable anode for lithium-ion batteries. ACS Appl Mater Interfaces 7:12625–12630CrossRef
39.
Zurück zum Zitat Liu G, Feng Y, Li Y, Qin M, An H, Hu W, Feng W (2015) Three-dimensional multilayer assemblies of MoS2/reduced graphene oxide for high-performance lithium ion batteries. Part Part Syst Char 32:489–497CrossRef Liu G, Feng Y, Li Y, Qin M, An H, Hu W, Feng W (2015) Three-dimensional multilayer assemblies of MoS2/reduced graphene oxide for high-performance lithium ion batteries. Part Part Syst Char 32:489–497CrossRef
40.
Zurück zum Zitat Wang HY, Jiang H, Hu YJ, Li N, Zhao XJ, Li CZ (2017) 2D MoS2/polyaniline heterostructures with enlarged interlayer spacing for superior lithium and sodium storage. J Mater Chem A 5:5383–5389CrossRef Wang HY, Jiang H, Hu YJ, Li N, Zhao XJ, Li CZ (2017) 2D MoS2/polyaniline heterostructures with enlarged interlayer spacing for superior lithium and sodium storage. J Mater Chem A 5:5383–5389CrossRef
41.
Zurück zum Zitat Yang LC, Wang SN, Mao JJ, Deng JW, Gao QS, Tang Y, Schmidt OG (2013) Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv Mater 25:1180–1184CrossRef Yang LC, Wang SN, Mao JJ, Deng JW, Gao QS, Tang Y, Schmidt OG (2013) Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv Mater 25:1180–1184CrossRef
42.
Zurück zum Zitat Liu QH, Huo J, Ma ZL, Wu ZJ, Wang SY (2016) In-situ formation of Ni3S2 interlayer between MoS2 and Ni foam for high-rate and highly-durable lithium ion batteries. Electrochim Acta 206:52–60CrossRef Liu QH, Huo J, Ma ZL, Wu ZJ, Wang SY (2016) In-situ formation of Ni3S2 interlayer between MoS2 and Ni foam for high-rate and highly-durable lithium ion batteries. Electrochim Acta 206:52–60CrossRef
43.
Zurück zum Zitat Chang K, Chen W (2011) L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5:4720–4728CrossRef Chang K, Chen W (2011) L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5:4720–4728CrossRef
44.
Zurück zum Zitat Hu L, Ren Y, Yang H, Xu Q (2014) Fabrication of 3D hierarchical MoS2/polyaniline and MoS2/C architectures for lithium-Ion battery applications. ACS Appl Mater Interfaces 6:14644–14652CrossRef Hu L, Ren Y, Yang H, Xu Q (2014) Fabrication of 3D hierarchical MoS2/polyaniline and MoS2/C architectures for lithium-Ion battery applications. ACS Appl Mater Interfaces 6:14644–14652CrossRef
45.
Zurück zum Zitat Li F, Ding Y, Gao PXX, Xin XQ, Wang ZL (2004) Single-cystal hexagonal disks and rings of ZnO: low-temperature, large-scale synthesis and growth mechanism. Angew Chem Int Ed 43:5238–5242CrossRef Li F, Ding Y, Gao PXX, Xin XQ, Wang ZL (2004) Single-cystal hexagonal disks and rings of ZnO: low-temperature, large-scale synthesis and growth mechanism. Angew Chem Int Ed 43:5238–5242CrossRef
46.
Zurück zum Zitat Li F, Gong F, Xiao Y, Zhang A, Zhao J, Fang S, Jia D (2013) ZnO twin-spheres exposed in ± (001) facets: stepwise self-assembly growth and anisotropic blue emission. ACS Nano 7:10482–10491CrossRef Li F, Gong F, Xiao Y, Zhang A, Zhao J, Fang S, Jia D (2013) ZnO twin-spheres exposed in ± (001) facets: stepwise self-assembly growth and anisotropic blue emission. ACS Nano 7:10482–10491CrossRef
47.
Zurück zum Zitat Gong F, Peng L, Zhang Y, Cao Y, Jia D, Li F (2018) Selectively sensing H2S and acetone through tailoring the facets exposed on the surfaces of ZnO supercrystals. Mater Lett 218:106–109CrossRef Gong F, Peng L, Zhang Y, Cao Y, Jia D, Li F (2018) Selectively sensing H2S and acetone through tailoring the facets exposed on the surfaces of ZnO supercrystals. Mater Lett 218:106–109CrossRef
48.
Zurück zum Zitat Gong F, Peng L, Liu H, Zhang Y, Jia D, Fang S, Li F, Li D (2018) 3D core–shell MoS2 superspheres composed of oriented nanosheets with quasi molecular superlattices: mimicked embryo formation and Li-storage properties. J Mater Chem A 6:18498–18507CrossRef Gong F, Peng L, Liu H, Zhang Y, Jia D, Fang S, Li F, Li D (2018) 3D core–shell MoS2 superspheres composed of oriented nanosheets with quasi molecular superlattices: mimicked embryo formation and Li-storage properties. J Mater Chem A 6:18498–18507CrossRef
49.
Zurück zum Zitat Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef
50.
Zurück zum Zitat Cao Y, Xiao Y, Gong Y, Wang C, Li F (2014) One-pot synthesis of MnOOH nanorods on graphene for asymmetric supercapacitors. Electrochim Acta 127:200–207CrossRef Cao Y, Xiao Y, Gong Y, Wang C, Li F (2014) One-pot synthesis of MnOOH nanorods on graphene for asymmetric supercapacitors. Electrochim Acta 127:200–207CrossRef
51.
Zurück zum Zitat Wang S, Wang R, Zhao Q, Ren L, Wen J, Chang J, Fang X, Hu N, Xu C (2019) Freeze-drying induced self-assembly approach for scalable constructing MoS2/graphene hybrid aerogels for lithium-ion batteries. J Colloid Interface Sci 544:37–45CrossRef Wang S, Wang R, Zhao Q, Ren L, Wen J, Chang J, Fang X, Hu N, Xu C (2019) Freeze-drying induced self-assembly approach for scalable constructing MoS2/graphene hybrid aerogels for lithium-ion batteries. J Colloid Interface Sci 544:37–45CrossRef
52.
Zurück zum Zitat Dong Y, Jiang H, Deng Z, Hu Y, Li C (2018) Synthesis and assembly of three-dimensional MoS2/rGO nanovesicles for high-performance lithium storage. Chem Eng J 350:1066–1072CrossRef Dong Y, Jiang H, Deng Z, Hu Y, Li C (2018) Synthesis and assembly of three-dimensional MoS2/rGO nanovesicles for high-performance lithium storage. Chem Eng J 350:1066–1072CrossRef
53.
Zurück zum Zitat Wang J, Tian J, Naren Wang X, Qin Z, Shan Z (2018) Synthesis of MoS2 and graphene composites as the anode materials for Li-ion batteries. Energy Technol 6:1913–1920CrossRef Wang J, Tian J, Naren Wang X, Qin Z, Shan Z (2018) Synthesis of MoS2 and graphene composites as the anode materials for Li-ion batteries. Energy Technol 6:1913–1920CrossRef
54.
Zurück zum Zitat Xue H, Wang J, Wang S, Muhammad S, Feng C, Wu Q, Li H, Shi D, Jiao Q, Zhao Y (2018) Core-shell MoS2@graphene composite microspheres as stable anodes for Li-ion batteries. New J Chem 42:15340–15345CrossRef Xue H, Wang J, Wang S, Muhammad S, Feng C, Wu Q, Li H, Shi D, Jiao Q, Zhao Y (2018) Core-shell MoS2@graphene composite microspheres as stable anodes for Li-ion batteries. New J Chem 42:15340–15345CrossRef
56.
Zurück zum Zitat He W, Zheng X, Peng J, Zhang Q, Pei D, Yan X (2018) One-step solid-phase synthesis of binder-free molybdenum disulfide/carbon fibers paper anode for high-performance lithium-ion batteries. J Alloys Compd 768:33–41CrossRef He W, Zheng X, Peng J, Zhang Q, Pei D, Yan X (2018) One-step solid-phase synthesis of binder-free molybdenum disulfide/carbon fibers paper anode for high-performance lithium-ion batteries. J Alloys Compd 768:33–41CrossRef
Metadaten
Titel
Effect of RGO coating on lithium storage performance of monodispersed core–shell MoS2 superspheres
verfasst von
Feilong Gong
Lifang Peng
Mengmeng Liu
Erchao Meng
Feng Li
Publikationsdatum
09.04.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 13/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03587-5

Weitere Artikel der Ausgabe 13/2019

Journal of Materials Science 13/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.