Skip to main content
Erschienen in: Journal of Iron and Steel Research International 8/2023

28.06.2023 | Original Paper

Effect of solidification rate on dendrite segregation and mechanical properties of Cu–15Ni–8Sn alloy prepared by directional solidification

verfasst von: Yu-fan Shi, Cheng-jun Guo, Ming-quan Yuan, Zhen-bin Jia, Gui-huan An, Xiang-peng Xiao, Bin Yang

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 8/2023

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The microstructures and mechanical properties of the directionally solidified Cu–15Ni–8Sn alloy were investigated at solidification rates ranging from 100 to 3000 μm/s. The results showed that the solidification rate significantly affects the phase distribution of the as-cast Cu–15Ni–8Sn alloy. The primary and secondary dendritic spacing reduces and eventually becomes stable as the solidification rate increases. Meanwhile, the size of the primary phase decreases, and its distribution becomes more uniform. The most severe segregation problem of this alloy has been greatly improved. Upon solidification at 100 μm/s, the as-cast Cu–15Ni–8Sn alloy consists of the α-Cu matrix, γ-CuNi2Sn phase, discontinuous precipitation structure, modulated structure, and D022 ordered phases. However, as the solidification rate increases, the discontinuous precipitation structure, modulated structures, and D022 ordered phases decrease and even disappear, reducing hardness. As the solidification rate increases, after homogenization treatment, the composition and microhardness distributions of Cu–15Ni–8Sn alloy become more uniform. The time for homogenization is also shortened. It reduces production energy usage and facilitates further mechanical processing.
Literatur
[1]
Zurück zum Zitat I. Lomakin, M. Castillo-Rodríguez, X. Sauvage, Mater. Sci. Eng. A 744 (2019) 206–214.CrossRef I. Lomakin, M. Castillo-Rodríguez, X. Sauvage, Mater. Sci. Eng. A 744 (2019) 206–214.CrossRef
[2]
[3]
Zurück zum Zitat S. Zhang, J. Shi, L. Zhao, L. Chen, Z. Lin, G. Tang, P. Shi, T. Zheng, Y. Guo, Q. Li, Z. Shen, B. Ding, Y. Zhong, Mater. Lett. 328 (2022) 133097.CrossRef S. Zhang, J. Shi, L. Zhao, L. Chen, Z. Lin, G. Tang, P. Shi, T. Zheng, Y. Guo, Q. Li, Z. Shen, B. Ding, Y. Zhong, Mater. Lett. 328 (2022) 133097.CrossRef
[4]
Zurück zum Zitat C. Guo, J. Wan, J. Chen, X. Xiao, H. Huang, J. Liu, B. Yang, Mater. Sci. Eng. A 795 (2020) 139917.CrossRef C. Guo, J. Wan, J. Chen, X. Xiao, H. Huang, J. Liu, B. Yang, Mater. Sci. Eng. A 795 (2020) 139917.CrossRef
[5]
Zurück zum Zitat J. Zhang, Z. Guo, J. Jie, J. Cheng, D. Zhang, J. Alloy. Compd. 897 (2022) 162736.CrossRef J. Zhang, Z. Guo, J. Jie, J. Cheng, D. Zhang, J. Alloy. Compd. 897 (2022) 162736.CrossRef
[6]
Zurück zum Zitat J. Cheng, Y. Gao, Z. Zhang, X. Gan, Q. Lei, X. Wu, J. Alloy. Compd. 918 (2022) 165408.CrossRef J. Cheng, Y. Gao, Z. Zhang, X. Gan, Q. Lei, X. Wu, J. Alloy. Compd. 918 (2022) 165408.CrossRef
[7]
Zurück zum Zitat B. Luo, D. Li, C. Zhao, Z. Wang, Z. Luo, W. Zhang, Mater. Sci. Eng. A 746 (2019) 154–161.CrossRef B. Luo, D. Li, C. Zhao, Z. Wang, Z. Luo, W. Zhang, Mater. Sci. Eng. A 746 (2019) 154–161.CrossRef
[8]
Zurück zum Zitat K. Zhang, L. Zhang, C. Shu, W. Fan, S. Li, X. Yuan, J. Zhao, Y. Wang, P. Wang, Materials 15 (2022) 5521.CrossRef K. Zhang, L. Zhang, C. Shu, W. Fan, S. Li, X. Yuan, J. Zhao, Y. Wang, P. Wang, Materials 15 (2022) 5521.CrossRef
[9]
Zurück zum Zitat Z. Guo, J. Jie, S. Liu, J. Liu, S. Yue, Y. Zhang, T. Li, Metall. Mater. Trans. A 51 (2020) 1229–1241.CrossRef Z. Guo, J. Jie, S. Liu, J. Liu, S. Yue, Y. Zhang, T. Li, Metall. Mater. Trans. A 51 (2020) 1229–1241.CrossRef
[10]
[11]
Zurück zum Zitat C. Zhao, Z. Wang, D. Li, D. Pan, B. Lou, Z. Luo, W. Zhang, J. Alloy. Compd. 823 (2020) 153759.CrossRef C. Zhao, Z. Wang, D. Li, D. Pan, B. Lou, Z. Luo, W. Zhang, J. Alloy. Compd. 823 (2020) 153759.CrossRef
[12]
Zurück zum Zitat C. Zhao, W. Zhang, Z. Wang, D. Li, Z. Luo, C. Yang, D. Zhang, Materials 10 (2017) 1038.CrossRef C. Zhao, W. Zhang, Z. Wang, D. Li, Z. Luo, C. Yang, D. Zhang, Materials 10 (2017) 1038.CrossRef
[13]
Zurück zum Zitat C. Guo, Y. Shi, J. Chen, X. Xiao, B. Liu, J. Liu, B. Yang, Mater. Charact. 171 (2021) 110760.CrossRef C. Guo, Y. Shi, J. Chen, X. Xiao, B. Liu, J. Liu, B. Yang, Mater. Charact. 171 (2021) 110760.CrossRef
[14]
Zurück zum Zitat Y. Shi, C. Guo, J. Chen, X. Xiao, H. Huang, B. Yang, Mater. Sci. Eng. A 826 (2021) 142025.CrossRef Y. Shi, C. Guo, J. Chen, X. Xiao, H. Huang, B. Yang, Mater. Sci. Eng. A 826 (2021) 142025.CrossRef
[15]
Zurück zum Zitat Z. Guo, J. Jie, S. Liu, J. Liu, S. Yue, Y. Zhang, T. Li, J. Alloy. Compd. 813 (2020) 152229.CrossRef Z. Guo, J. Jie, S. Liu, J. Liu, S. Yue, Y. Zhang, T. Li, J. Alloy. Compd. 813 (2020) 152229.CrossRef
[16]
Zurück zum Zitat C. Guo, Y. Shi, X. Xiao, S. You, G. An, Y. Gong, B. Yang, J. Alloy. Compd. 923 (2022) 166410.CrossRef C. Guo, Y. Shi, X. Xiao, S. You, G. An, Y. Gong, B. Yang, J. Alloy. Compd. 923 (2022) 166410.CrossRef
[17]
Zurück zum Zitat Q.X. Yu, X.N. Li, K.R. Wei, Z.M. Li, Y.H. Zheng, N.J. Li, X.T. Cheng, C.Y. Wang, Q. Wang, C. Dong, Mater. Des. 167 (2019) 107641.CrossRef Q.X. Yu, X.N. Li, K.R. Wei, Z.M. Li, Y.H. Zheng, N.J. Li, X.T. Cheng, C.Y. Wang, Q. Wang, C. Dong, Mater. Des. 167 (2019) 107641.CrossRef
[18]
Zurück zum Zitat C. Zhao, Z. Wang, D.Q. Pan, D.X. Li, Z.Q. Luo, D.T. Zhang, C. Yang, W.W. Zhang, Trans. Nonferrous Met. Soc. China 29 (2019) 2556–2565.CrossRef C. Zhao, Z. Wang, D.Q. Pan, D.X. Li, Z.Q. Luo, D.T. Zhang, C. Yang, W.W. Zhang, Trans. Nonferrous Met. Soc. China 29 (2019) 2556–2565.CrossRef
[19]
Zurück zum Zitat M. Gao, Z. Chen, H. Kang, R. Li, W. Wang, C. Zou, T. Wang, Mater. Sci. Eng. A 715 (2018) 340–347.CrossRef M. Gao, Z. Chen, H. Kang, R. Li, W. Wang, C. Zou, T. Wang, Mater. Sci. Eng. A 715 (2018) 340–347.CrossRef
[20]
Zurück zum Zitat J. Zhang, Z. Liu, Z. Guo, S. Liu, Y. Dong, Y. Fu, J. Jie, D. Zhang, Mater. Sci. Eng. A 831 (2022) 142287.CrossRef J. Zhang, Z. Liu, Z. Guo, S. Liu, Y. Dong, Y. Fu, J. Jie, D. Zhang, Mater. Sci. Eng. A 831 (2022) 142287.CrossRef
[21]
Zurück zum Zitat J.G. Zhang, H.S. Shi, D.S. Sun, J. Mater. Process. Technol. 138 (2003) 357–360.CrossRef J.G. Zhang, H.S. Shi, D.S. Sun, J. Mater. Process. Technol. 138 (2003) 357–360.CrossRef
[22]
Zurück zum Zitat P. Hermann, D.G. Morris, Metall. Mater. Trans. A 25 (1994) 1403–1412.CrossRef P. Hermann, D.G. Morris, Metall. Mater. Trans. A 25 (1994) 1403–1412.CrossRef
[23]
Zurück zum Zitat L. Deyong, R. Tremblay, R. Angers, Mater. Sci. Eng. A 124 (1990) 223–231.CrossRef L. Deyong, R. Tremblay, R. Angers, Mater. Sci. Eng. A 124 (1990) 223–231.CrossRef
[24]
Zurück zum Zitat C. Zhao, Z. Wang, D. Li, L. Kollo, Z. Luo, W. Zhang, K.G. Prashanth, Int. J. Plast. 138 (2021) 102926.CrossRef C. Zhao, Z. Wang, D. Li, L. Kollo, Z. Luo, W. Zhang, K.G. Prashanth, Int. J. Plast. 138 (2021) 102926.CrossRef
[25]
Zurück zum Zitat Y. Ouyang, X.P. Gan, S.Z. Zhang, Z. Li, K.C. Zhou, Y.X. Jiang, X.W. Zhang, Trans. Nonferrous Met. Soc. China 27 (2017) 1947–1955.CrossRef Y. Ouyang, X.P. Gan, S.Z. Zhang, Z. Li, K.C. Zhou, Y.X. Jiang, X.W. Zhang, Trans. Nonferrous Met. Soc. China 27 (2017) 1947–1955.CrossRef
[26]
Zurück zum Zitat J. Li, Z. Zhang, W. Xu, Y. Yang, P. Xue, Q. Teng, C. Cai, W. Li, Q. Wei, Mater. Sci. Eng. A 855 (2022) 143866.CrossRef J. Li, Z. Zhang, W. Xu, Y. Yang, P. Xue, Q. Teng, C. Cai, W. Li, Q. Wei, Mater. Sci. Eng. A 855 (2022) 143866.CrossRef
[27]
Zurück zum Zitat J. Wang, X. Zhou, J. Li, J. Zhu, M. Zhang, Mater. Sci. Eng. A 840 (2022) 142934.CrossRef J. Wang, X. Zhou, J. Li, J. Zhu, M. Zhang, Mater. Sci. Eng. A 840 (2022) 142934.CrossRef
[28]
Zurück zum Zitat H.J. Zhang, M.H. Wu, C.M.G. Rodrigues, A. Ludwig, A. Kharicha, Metall. Mater. Trans. A 52 (2021) 3007–3022.CrossRef H.J. Zhang, M.H. Wu, C.M.G. Rodrigues, A. Ludwig, A. Kharicha, Metall. Mater. Trans. A 52 (2021) 3007–3022.CrossRef
[29]
Zurück zum Zitat L. Cao, D. Liao, Y. Lu, T. Chen, Metall. Mater. Trans. A 47 (2016) 4640–4647.CrossRef L. Cao, D. Liao, Y. Lu, T. Chen, Metall. Mater. Trans. A 47 (2016) 4640–4647.CrossRef
[30]
Zurück zum Zitat C. Chen, J.X. Sun, A.M. Diao, Y.H. Yang, J.G. Li, Y.Z. Zhou, J. Alloy. Compd. 891 (2022) 161949.CrossRef C. Chen, J.X. Sun, A.M. Diao, Y.H. Yang, J.G. Li, Y.Z. Zhou, J. Alloy. Compd. 891 (2022) 161949.CrossRef
[31]
[32]
Zurück zum Zitat H.T. Zheng, R.R. Chen, G. Qin, X.Z. Li, Y.Q. Su, H.S. Ding, J.J. Guo, H.Z. Fu, J. Mater. Sci. Technol. 38 (2020) 19–27.CrossRef H.T. Zheng, R.R. Chen, G. Qin, X.Z. Li, Y.Q. Su, H.S. Ding, J.J. Guo, H.Z. Fu, J. Mater. Sci. Technol. 38 (2020) 19–27.CrossRef
[33]
[34]
Zurück zum Zitat M. Cao, D. Zhang, Y. Gao, R. Chen, G. Huang, Z. Feng, R. Poprawe, J.H. Schleifenbaum, S. Ziegler, Mater. Sci. Eng. A 801 (2021) 140427.CrossRef M. Cao, D. Zhang, Y. Gao, R. Chen, G. Huang, Z. Feng, R. Poprawe, J.H. Schleifenbaum, S. Ziegler, Mater. Sci. Eng. A 801 (2021) 140427.CrossRef
[35]
Zurück zum Zitat G. Ding, W. Huang, Y. Zhou, J. Mater. Sci. Lett. 16 (1997) 376–378.CrossRef G. Ding, W. Huang, Y. Zhou, J. Mater. Sci. Lett. 16 (1997) 376–378.CrossRef
[37]
Zurück zum Zitat Z.H. Mei, Microstructure evolution of AM3 directionally solidified superalloy under different withdraw conditions, Xi′an University of Science and Technology, Xi′an, China, 2020. Z.H. Mei, Microstructure evolution of AM3 directionally solidified superalloy under different withdraw conditions, Xi′an University of Science and Technology, Xi′an, China, 2020.
[39]
Zurück zum Zitat J.C. Zhao, Spinodal decomposition, ordering transformation, and discontinuous precipitation in gold–nickel and copper–nickel–tin alloys, Lehigh University, Commonwealth of Pennsylvania, Commonwealth of Pennsylvania, USA, 1995. J.C. Zhao, Spinodal decomposition, ordering transformation, and discontinuous precipitation in gold–nickel and copper–nickel–tin alloys, Lehigh University, Commonwealth of Pennsylvania, Commonwealth of Pennsylvania, USA, 1995.
[40]
Zurück zum Zitat C. Joshua, Heat treatment effects on mechanical behavior of Cu–15Ni–8Sn produced via powder metallurgy, Case Western Reserve University, Ohio, USA, 2007. C. Joshua, Heat treatment effects on mechanical behavior of Cu–15Ni–8Sn produced via powder metallurgy, Case Western Reserve University, Ohio, USA, 2007.
Metadaten
Titel
Effect of solidification rate on dendrite segregation and mechanical properties of Cu–15Ni–8Sn alloy prepared by directional solidification
verfasst von
Yu-fan Shi
Cheng-jun Guo
Ming-quan Yuan
Zhen-bin Jia
Gui-huan An
Xiang-peng Xiao
Bin Yang
Publikationsdatum
28.06.2023
Verlag
Springer Nature Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 8/2023
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-023-01015-2

Weitere Artikel der Ausgabe 8/2023

Journal of Iron and Steel Research International 8/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.