Skip to main content
Erschienen in: Advances in Manufacturing 4/2022

06.04.2022

Effect of stepover and torch tilting angle on a repair process using WAAM

verfasst von: Francesco Baffa, Giuseppe Venturini, Gianni Campatelli, Emanuele Galvanetto

Erschienen in: Advances in Manufacturing | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To sustain the transition to a greener economy and greener manufacturing, it is necessary to develop new approaches and technologies to repair metal components; this will result in a drastic reduction in energy and material usage. In this study, wire arc additive manufacturing (WAAM) was used to deposit a layer of new material on an existing surface, with the objective of finding the optimal configuration that maximized the layer quality and material efficiency. The parameters considered are the stepover among the deposited beads and the inclination of the torch with respect to the repaired surfaces. The inclination angle is crucial when repairing complex surfaces, like those of a mold, owing to accessibility issues, the torch cannot be maintained orthogonal to the surfaces along the entire toolpath. Different configurations were tested in order to assess the quality of the materials in terms of the presence of material voids, depth of penetration, and the heat affected zone (HAZ) and to understand the effects of these variables on the material efficiency and thickness of the repairing layer. It should be noted that by adopting deposition parameters set to have a low heat input, the use of a tilting angle has beneficial effects on the quality of the deposited layer and the process efficiency. Metallurgical and geometrical measurements were carried out to assess the effect of these two variables depositing a layer of plain carbon steel.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat European Commission (2011) Roadmap to a resource efficient Europe, Brussels European Commission (2011) Roadmap to a resource efficient Europe, Brussels
2.
Zurück zum Zitat European Commission (2020) Circular economy action plan. Eur Comm, March, p 28 European Commission (2020) Circular economy action plan. Eur Comm, March, p 28
3.
Zurück zum Zitat Eurometaux (2016) EU circular economy package—overall recommendations, April Eurometaux (2016) EU circular economy package—overall recommendations, April
6.
Zurück zum Zitat Acharya R, Das S (2015) Additive manufacturing of IN100 superalloy through scanning laser epitaxy for turbine engine hot-section component repair: process development, modeling, microstructural characterization, and process control. Metall Mater Trans A Phys Metall Mater Sci 46(9):3864–3875CrossRef Acharya R, Das S (2015) Additive manufacturing of IN100 superalloy through scanning laser epitaxy for turbine engine hot-section component repair: process development, modeling, microstructural characterization, and process control. Metall Mater Trans A Phys Metall Mater Sci 46(9):3864–3875CrossRef
7.
Zurück zum Zitat Liu Q, Janardhana M, Hinton B et al (2011) Laser cladding as a potential repair technology for damaged aircraft components. Int J Struct Integr 2(3):314–331CrossRef Liu Q, Janardhana M, Hinton B et al (2011) Laser cladding as a potential repair technology for damaged aircraft components. Int J Struct Integr 2(3):314–331CrossRef
8.
Zurück zum Zitat Wilson JM, Piya C, Shin YC et al (2014) Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. J Clean Prod 80:170–178CrossRef Wilson JM, Piya C, Shin YC et al (2014) Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. J Clean Prod 80:170–178CrossRef
9.
Zurück zum Zitat Payne G, Ahmad A, Fitzpatrick S et al (2016) Remanufacturing H13 steel moulds and dies using laser metal deposition. Adv Transdiscip Eng 3:93–98 Payne G, Ahmad A, Fitzpatrick S et al (2016) Remanufacturing H13 steel moulds and dies using laser metal deposition. Adv Transdiscip Eng 3:93–98
10.
Zurück zum Zitat Leunda J, Soriano C, Sanz C et al (2011) Laser cladding of vanadium-carbide tool steels for die repair. Phys Procedia 12:345–352CrossRef Leunda J, Soriano C, Sanz C et al (2011) Laser cladding of vanadium-carbide tool steels for die repair. Phys Procedia 12:345–352CrossRef
11.
Zurück zum Zitat Alegoz M, Kaya O, Bayindir ZP (2021) A comparison of pure manufacturing and hybrid manufacturing–remanufacturing systems under carbon tax policy. Eur J Oper Res 294(1):161–173MathSciNetMATHCrossRef Alegoz M, Kaya O, Bayindir ZP (2021) A comparison of pure manufacturing and hybrid manufacturing–remanufacturing systems under carbon tax policy. Eur J Oper Res 294(1):161–173MathSciNetMATHCrossRef
12.
Zurück zum Zitat Leino M, Pekkarinen J, Soukka R (2016) The role of laser additive manufacturing methods of metals in repair, refurbishment and remanufacturing—enabling circular economy. Phys Procedia 83:752–760CrossRef Leino M, Pekkarinen J, Soukka R (2016) The role of laser additive manufacturing methods of metals in repair, refurbishment and remanufacturing—enabling circular economy. Phys Procedia 83:752–760CrossRef
13.
Zurück zum Zitat Optomec Customers Surpass 10 Million Turbine Blade Repairs—Optomec (2020) Optomec Customers Surpass 10 Million Turbine Blade Repairs—Optomec (2020)
14.
Zurück zum Zitat Williams SW, Martina F, Addison AC et al (2016) Wire + arc additive manufacturing. Mater Sci Technol 32(7):641–647CrossRef Williams SW, Martina F, Addison AC et al (2016) Wire + arc additive manufacturing. Mater Sci Technol 32(7):641–647CrossRef
15.
Zurück zum Zitat IvánTabernero PA, Álvarez P et al (2018) Study on arc welding processes for high deposition rate additive manufacturing. Procedia CIRP 68:358–362CrossRef IvánTabernero PA, Álvarez P et al (2018) Study on arc welding processes for high deposition rate additive manufacturing. Procedia CIRP 68:358–362CrossRef
16.
Zurück zum Zitat Cunningham CR, Flynn JM, Shokrani A et al (2018) Invited review article: strategies and processes for high quality wire arc additive manufacturing. Addit Manuf 22:672–686 Cunningham CR, Flynn JM, Shokrani A et al (2018) Invited review article: strategies and processes for high quality wire arc additive manufacturing. Addit Manuf 22:672–686
19.
Zurück zum Zitat Liu J, Xu Y, Ge Y et al (2020) Wire and arc additive manufacturing of metal components: a review of recent research developments. Int J Adv Manuf Technol 111(1/2):149–198CrossRef Liu J, Xu Y, Ge Y et al (2020) Wire and arc additive manufacturing of metal components: a review of recent research developments. Int J Adv Manuf Technol 111(1/2):149–198CrossRef
20.
Zurück zum Zitat Wu B, Pan ZX, Ding DH et al (2018) A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement. J Manuf Process 35:127–139CrossRef Wu B, Pan ZX, Ding DH et al (2018) A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement. J Manuf Process 35:127–139CrossRef
21.
Zurück zum Zitat Xia C, Pan ZX, Polden J et al (2020) A review on wire arc additive manufacturing: monitoring, control and a framework of automated system. J Manuf Syst 57:31–45CrossRef Xia C, Pan ZX, Polden J et al (2020) A review on wire arc additive manufacturing: monitoring, control and a framework of automated system. J Manuf Syst 57:31–45CrossRef
23.
Zurück zum Zitat Chen C, Wang Y, Ou H et al (2014) A review on remanufacture of dies and moulds. J Clean Prod 64:13–23CrossRef Chen C, Wang Y, Ou H et al (2014) A review on remanufacture of dies and moulds. J Clean Prod 64:13–23CrossRef
24.
Zurück zum Zitat Zhang J, Zhou J, Wang Q et al (2020) Process planning of automatic wire arc additive remanufacturing for hot forging die. Int J Adv Manuf Technol 109(5/6):1613–1623CrossRef Zhang J, Zhou J, Wang Q et al (2020) Process planning of automatic wire arc additive remanufacturing for hot forging die. Int J Adv Manuf Technol 109(5/6):1613–1623CrossRef
25.
Zurück zum Zitat Koehler H, Partes K, Seefeld T et al (2010) Laser reconditioning of crankshafts: from lab to application. Phys Procedia 5:387–397CrossRef Koehler H, Partes K, Seefeld T et al (2010) Laser reconditioning of crankshafts: from lab to application. Phys Procedia 5:387–397CrossRef
27.
Zurück zum Zitat Wang Y, Chu X, Su G et al (2019) Laser cladding with grinding processing of orthogonal offset face gear. Int J Adv Manuf Technol 100(5/8):1741–1753CrossRef Wang Y, Chu X, Su G et al (2019) Laser cladding with grinding processing of orthogonal offset face gear. Int J Adv Manuf Technol 100(5/8):1741–1753CrossRef
28.
Zurück zum Zitat Zhu L, Wang S, Pan H et al (2020) Research on remanufacturing strategy for 45 steel gear using H13 steel powder based on laser cladding technology. J Manuf Process 49:344–354CrossRef Zhu L, Wang S, Pan H et al (2020) Research on remanufacturing strategy for 45 steel gear using H13 steel powder based on laser cladding technology. J Manuf Process 49:344–354CrossRef
29.
Zurück zum Zitat Zhu Y, Yang Y, Mu X et al (2019) Study on wear and RCF performance of repaired damage railway wheels: assessing laser cladding to repair local defects on wheels. Wear 430(431):126–136CrossRef Zhu Y, Yang Y, Mu X et al (2019) Study on wear and RCF performance of repaired damage railway wheels: assessing laser cladding to repair local defects on wheels. Wear 430(431):126–136CrossRef
30.
Zurück zum Zitat Le VT, Paris H (2021) On the use of gas-metal-arc-welding additive manufacturing for repurposing of low-carbon steel components: microstructures and mechanical properties. Weld World 65(1):157–166CrossRef Le VT, Paris H (2021) On the use of gas-metal-arc-welding additive manufacturing for repurposing of low-carbon steel components: microstructures and mechanical properties. Weld World 65(1):157–166CrossRef
31.
Zurück zum Zitat Zhuo Y, Yang C, Fan C et al (2020) Microstructure and mechanical properties of wire arc additive repairing Ti-6.5Al-2Sn-2Zr-4Mo-4Cr titanium alloy. Mater Sci Technol 36(15):1712–1719CrossRef Zhuo Y, Yang C, Fan C et al (2020) Microstructure and mechanical properties of wire arc additive repairing Ti-6.5Al-2Sn-2Zr-4Mo-4Cr titanium alloy. Mater Sci Technol 36(15):1712–1719CrossRef
32.
Zurück zum Zitat Li X, Han Q, Zhang G (2021) Large-size sprocket repairing based on robotic GMAW additive manufacturing. Weld World 65(5):793–805CrossRef Li X, Han Q, Zhang G (2021) Large-size sprocket repairing based on robotic GMAW additive manufacturing. Weld World 65(5):793–805CrossRef
33.
Zurück zum Zitat Liberini M, Astarita A, Campatelli G et al (2017) Selection of optimal process parameters for wire arc additive manufacturing. Procedia CIRP 62:470–474CrossRef Liberini M, Astarita A, Campatelli G et al (2017) Selection of optimal process parameters for wire arc additive manufacturing. Procedia CIRP 62:470–474CrossRef
34.
Zurück zum Zitat Rafieazad M, Vahedi NA, Ghaffari M et al (2021) On microstructure and mechanical propertiesof a low-carbon low-alloy steel block fabricated by wire arc additive manufacturing. J Mater Eng Perform 30:4937–4945CrossRef Rafieazad M, Vahedi NA, Ghaffari M et al (2021) On microstructure and mechanical propertiesof a low-carbon low-alloy steel block fabricated by wire arc additive manufacturing. J Mater Eng Perform 30:4937–4945CrossRef
36.
Zurück zum Zitat Plangger J, Schabhüttl P, Vuherer T et al (2019) CMT additive manufacturing of a high strength steel alloy for application in crane construction. Metals 9(6):1–14CrossRef Plangger J, Schabhüttl P, Vuherer T et al (2019) CMT additive manufacturing of a high strength steel alloy for application in crane construction. Metals 9(6):1–14CrossRef
37.
Zurück zum Zitat Aiyiti W, Zhao W, Lu B et al (2006) Investigation of the overlapping parameters of MPAW-based rapid prototyping. Rapid Prototyp J 12(3):165–172CrossRef Aiyiti W, Zhao W, Lu B et al (2006) Investigation of the overlapping parameters of MPAW-based rapid prototyping. Rapid Prototyp J 12(3):165–172CrossRef
38.
Zurück zum Zitat Cao Y, Zhu S, Liang X et al (2011) Overlapping model of beads and curve fitting of bead section for rapid manufacturing by robotic MAG welding process. Robot Comput Integr Manuf 27(3):641–645CrossRef Cao Y, Zhu S, Liang X et al (2011) Overlapping model of beads and curve fitting of bead section for rapid manufacturing by robotic MAG welding process. Robot Comput Integr Manuf 27(3):641–645CrossRef
39.
Zurück zum Zitat Suryakumar S, Karunakaran KP, Bernard A et al (2011) Weld bead modeling and process optimization in hybrid layered manufacturing. CAD Comput Aided Des 43(4):331–344CrossRef Suryakumar S, Karunakaran KP, Bernard A et al (2011) Weld bead modeling and process optimization in hybrid layered manufacturing. CAD Comput Aided Des 43(4):331–344CrossRef
40.
Zurück zum Zitat Xiong J, Zhang G, Gao H et al (2013) Modeling of bead section profile and overlapping beads with experimental validation for robotic GMAW-based rapid manufacturing. Robot Comput Integr Manuf 29(2):417–423CrossRef Xiong J, Zhang G, Gao H et al (2013) Modeling of bead section profile and overlapping beads with experimental validation for robotic GMAW-based rapid manufacturing. Robot Comput Integr Manuf 29(2):417–423CrossRef
41.
Zurück zum Zitat Ding D, Pan Z, Cuiuri D et al (2015) A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM). Robot Comput Integr Manuf 31:101–110CrossRef Ding D, Pan Z, Cuiuri D et al (2015) A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM). Robot Comput Integr Manuf 31:101–110CrossRef
42.
Zurück zum Zitat Li Y, Sun Y, Han Q et al (2018) Enhanced beads overlapping model for wire and arc additive manufacturing of multi-layer multi-bead metallic parts. J Mater Process Technol 252:838–848CrossRef Li Y, Sun Y, Han Q et al (2018) Enhanced beads overlapping model for wire and arc additive manufacturing of multi-layer multi-bead metallic parts. J Mater Process Technol 252:838–848CrossRef
43.
Zurück zum Zitat Lee CM, Woo WS, Roh YH (2017) Remanufacturing: trends and issues. Int J Precis Eng Manuf Green Technol 4(1):113–125CrossRef Lee CM, Woo WS, Roh YH (2017) Remanufacturing: trends and issues. Int J Precis Eng Manuf Green Technol 4(1):113–125CrossRef
44.
Zurück zum Zitat Onuike B, Bandyopadhyay A (2019) Additive manufacturing in repair: influence of processing parameters on properties of Inconel 718. Mater Lett 252:256–259CrossRef Onuike B, Bandyopadhyay A (2019) Additive manufacturing in repair: influence of processing parameters on properties of Inconel 718. Mater Lett 252:256–259CrossRef
45.
Zurück zum Zitat Retrofix|Additive manufacturing for repairing of metal part (2020) Retrofix|Additive manufacturing for repairing of metal part (2020)
46.
Zurück zum Zitat Sarathchandra DT, Davidson MJ, Visvanathan G (2020) Parameters effect on SS304 beads deposited by wire arc additive manufacturing. Mater Manuf Process 35(7):852–858CrossRef Sarathchandra DT, Davidson MJ, Visvanathan G (2020) Parameters effect on SS304 beads deposited by wire arc additive manufacturing. Mater Manuf Process 35(7):852–858CrossRef
47.
Zurück zum Zitat European Standards, British Standard BS EN 1011-2:2001, vol 3, no 1 (2000) European Standards, British Standard BS EN 1011-2:2001, vol 3, no 1 (2000)
48.
Zurück zum Zitat Zhou X, Tian QH, Du YX et al (2021) Investigation of the effect of torch tilt and external magnetic field on arc during overlapping deposition of wire arc additive manufacturing. Rapid Prototyp J 27(1):24–36CrossRef Zhou X, Tian QH, Du YX et al (2021) Investigation of the effect of torch tilt and external magnetic field on arc during overlapping deposition of wire arc additive manufacturing. Rapid Prototyp J 27(1):24–36CrossRef
Metadaten
Titel
Effect of stepover and torch tilting angle on a repair process using WAAM
verfasst von
Francesco Baffa
Giuseppe Venturini
Gianni Campatelli
Emanuele Galvanetto
Publikationsdatum
06.04.2022
Verlag
Shanghai University
Erschienen in
Advances in Manufacturing / Ausgabe 4/2022
Print ISSN: 2095-3127
Elektronische ISSN: 2195-3597
DOI
https://doi.org/10.1007/s40436-022-00393-2

Weitere Artikel der Ausgabe 4/2022

Advances in Manufacturing 4/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.