Skip to main content
Erschienen in: Strength of Materials 3/2019

13.08.2019

Effect of Textured Dentated Surfaces on 30KhGSA Steel Damage and Life at Fatigue, Fretting Fatigue, and Fretting

verfasst von: G. V. Tsyban’ov, V. E. Marchuk, O. O. Mikosyanchyk

Erschienen in: Strength of Materials | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Machines and constructions are noted to contain components, units, and assemblies, which are joined together, forming a large number of contacting pairs. At operating loads, the latter become sources of material damage as a result of fretting fatigue and fretting wear. The safety and long-term operation of those items would require studies on the nature of these processes and search for the methods of reducing their intensity. Investigation results for the effect of textured surfaces in the form of a dent (recess) network and electric-spark VK8 alloy embedding over 30KhGSA steel specimen surfaces on fatigue, fretting fatigue, and fretting wear characteristics are presented. The dent network is formed by plastic indentation using a specially developed device. This process initiates residual tensile stresses. Their optimization was carried out with computation-experimental correlation between the geometrical ratios of dent network parameters (spacing between dent rows, in-row spacing, dent depth). Discrete VK8 alloy-embedded surfaces were generated with the electric-spark method, providing optimum process parameters. Textured surfaces reduce fatigue and fretting fatigue resistance, while enhancing the fretting wear one in comparison with smooth surfaces. Additional treatment of the textured dentated surface with the ion-plasma thermocyclic nitriding method greatly increases the fatigue and fretting fatigue resistance of 30KhGSA steel. Electric-spark VK8 alloy embedding results in worse fatigue and fretting fatigue properties, which is determined by the surface formation technology and difference between embedded particle and base metal characteristics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Ferjaoui, T. Yue, M. Abdel Wahab, and R. Hojjati-Talemi, “Prediction of fretting fatigue crack initiation in double lap bolted joint using continuum damage mechanics,” Int. J. Fatigue, 73, 66–76 (2015).CrossRef A. Ferjaoui, T. Yue, M. Abdel Wahab, and R. Hojjati-Talemi, “Prediction of fretting fatigue crack initiation in double lap bolted joint using continuum damage mechanics,” Int. J. Fatigue, 73, 66–76 (2015).CrossRef
2.
Zurück zum Zitat Y. K. Chen, L. Han, Chrysanthou, and J. M. O’Sullivan, “Fretting wear in self-piercing riveted aluminium alloy sheet,” Wear, 255, Nos. 7–12, 1463–1470 (2003). Y. K. Chen, L. Han, Chrysanthou, and J. M. O’Sullivan, “Fretting wear in self-piercing riveted aluminium alloy sheet,” Wear, 255, Nos. 7–12, 1463–1470 (2003).
3.
Zurück zum Zitat T. Juuma, “Torsional fretting fatigue strength of a shrink-fitted shaft with a grooved hub,” Tribol. Int., 33, No. 8, 537–543 (2000).CrossRef T. Juuma, “Torsional fretting fatigue strength of a shrink-fitted shaft with a grooved hub,” Tribol. Int., 33, No. 8, 537–543 (2000).CrossRef
4.
Zurück zum Zitat C. Ruiz, P. H. B. Boddington, and K. C. Chen, “An investigation of fatigue and fretting in a dovetail joint,” Exp. Mech., 24, No. 3, 208–217 (1984).CrossRef C. Ruiz, P. H. B. Boddington, and K. C. Chen, “An investigation of fatigue and fretting in a dovetail joint,” Exp. Mech., 24, No. 3, 208–217 (1984).CrossRef
5.
Zurück zum Zitat M. J. He and C. Ruiz, “Fatigue life of dovetail joints: verification of a simple biaxial model,” Exp. Mech., 29, No. 2, 126–131 (1989).CrossRef M. J. He and C. Ruiz, “Fatigue life of dovetail joints: verification of a simple biaxial model,” Exp. Mech., 29, No. 2, 126–131 (1989).CrossRef
6.
Zurück zum Zitat J. Vallory, “Methodology of PWR fuel rod vibration and fretting evaluation in HERMES facilities,” in: Structural Behaviour of Fuel Assemblies for Water Cooled Reactors (Proc. of a Technical Meeting), IAEA-TECDOC-1454, International Atomic Energy Agency (IAEA), Vienna (2005), pp. 221–230. J. Vallory, “Methodology of PWR fuel rod vibration and fretting evaluation in HERMES facilities,” in: Structural Behaviour of Fuel Assemblies for Water Cooled Reactors (Proc. of a Technical Meeting), IAEA-TECDOC-1454, International Atomic Energy Agency (IAEA), Vienna (2005), pp. 221–230.
7.
Zurück zum Zitat M. Helmi Attia, “Fretting fatigue and wear damage of structural components in nuclear power stations – Fitness for service and life management perspective,” Tribol. Int., 39, No. 10, 1294–1304 (2006).CrossRef M. Helmi Attia, “Fretting fatigue and wear damage of structural components in nuclear power stations – Fitness for service and life management perspective,” Tribol. Int., 39, No. 10, 1294–1304 (2006).CrossRef
8.
Zurück zum Zitat D. W. Hoeppner, “Fretting fatigue case studies of engineering components,” Tribol. Int., 39, No. 10, 1271–1276 (2006).CrossRef D. W. Hoeppner, “Fretting fatigue case studies of engineering components,” Tribol. Int., 39, No. 10, 1271–1276 (2006).CrossRef
9.
Zurück zum Zitat J. J. Madge, S. B. Leen, and P. H. Shipway, “The critical role of fretting wear in the analysis of fretting fatigue,” Wear, 263, Nos. 1–6, 542–551 (2007). J. J. Madge, S. B. Leen, and P. H. Shipway, “The critical role of fretting wear in the analysis of fretting fatigue,” Wear, 263, Nos. 1–6, 542–551 (2007).
10.
Zurück zum Zitat S. Munoz, H. Proudhon, J. Domirnguez, and S. Fouvry, “Prediction of the crack extension under fretting wear loading conditions,” Int. J. Fatigue, 28, No. 12, 1769–1779 (2006).CrossRef S. Munoz, H. Proudhon, J. Domirnguez, and S. Fouvry, “Prediction of the crack extension under fretting wear loading conditions,” Int. J. Fatigue, 28, No. 12, 1769–1779 (2006).CrossRef
11.
Zurück zum Zitat V. V. Shevelya and G. S. Kalda, Fretting Fatigue of Metals [in Russian], Podillya, Khmelnitsky (1998). V. V. Shevelya and G. S. Kalda, Fretting Fatigue of Metals [in Russian], Podillya, Khmelnitsky (1998).
12.
Zurück zum Zitat B. A. Lyashenko, A. Ya. Movshovich, and A. I. Dolmatov, “Strengthening of a discrete surface structure”, Tekhnol. Sist., No. 4, 17–25 (2001). B. A. Lyashenko, A. Ya. Movshovich, and A. I. Dolmatov, “Strengthening of a discrete surface structure”, Tekhnol. Sist., No. 4, 17–25 (2001).
13.
Zurück zum Zitat I. Etsion, “State of the art in laser surface texturing,” in: Proc. of the 7th Biennial Conf. on Engineering Systems Design and Analysis (July 19–22, 2004, Manchester, UK), Paper No. ESDA2004-58058, American Society of Mechanical Engineers (2004), pp. 585–593. I. Etsion, “State of the art in laser surface texturing,” in: Proc. of the 7th Biennial Conf. on Engineering Systems Design and Analysis (July 19–22, 2004, Manchester, UK), Paper No. ESDA2004-58058, American Society of Mechanical Engineers (2004), pp. 585–593.
14.
Zurück zum Zitat O. E. Plyusnin, I. F. Shul’ga, O. I. Shul’ga, and V. E. Marchuk, Device for the Recess Relief Formation on the Flat Friction Surface Holding Lubricants [in Ukrainian], Patent 13762 Ukraine, Valid since April 17, 2006, Bul. No. 4. O. E. Plyusnin, I. F. Shul’ga, O. I. Shul’ga, and V. E. Marchuk, Device for the Recess Relief Formation on the Flat Friction Surface Holding Lubricants [in Ukrainian], Patent 13762 Ukraine, Valid since April 17, 2006, Bul. No. 4.
15.
Zurück zum Zitat V. E. Marchuk, “Stress-strain state of textured surfaces of tribological systems,” Probl. Tert. Znosh., No. 3 (64), 89–93 (2014). V. E. Marchuk, “Stress-strain state of textured surfaces of tribological systems,” Probl. Tert. Znosh., No. 3 (64), 89–93 (2014).
16.
Zurück zum Zitat B. A. Lyashenko, E. K. Solovykh, V. I. Mirnenko, et al., Optimization of Discrete Surface Formation Technology after Strength and Wear Resistance Criteria [in Russian], Pisarenko Institute of Problems of Strength, National Academy of Sciences of Ukraine, Kiev (2010). B. A. Lyashenko, E. K. Solovykh, V. I. Mirnenko, et al., Optimization of Discrete Surface Formation Technology after Strength and Wear Resistance Criteria [in Russian], Pisarenko Institute of Problems of Strength, National Academy of Sciences of Ukraine, Kiev (2010).
17.
Zurück zum Zitat G. V. Tsyban’ov, V. E. Marchuk, O. M. Herasymchuk, and V. V. Zhyginas, “Fretting fatigue of aviation components,” Probl. Tert. Znosh., No. 2 (49), 177–190 (2008). G. V. Tsyban’ov, V. E. Marchuk, O. M. Herasymchuk, and V. V. Zhyginas, “Fretting fatigue of aviation components,” Probl. Tert. Znosh., No. 2 (49), 177–190 (2008).
18.
Zurück zum Zitat N. L. Golego, A. Ya. Alyab’ev, and V. V. Shevelya, Fretting Corrosion of Metals [in Russian], Tekhnika, Kiev (1974). N. L. Golego, A. Ya. Alyab’ev, and V. V. Shevelya, Fretting Corrosion of Metals [in Russian], Tekhnika, Kiev (1974).
19.
Zurück zum Zitat C. D. Lykins, S. Mall, and V. Jain, “A shear stress-based parameter for fretting fatigue crack initiation,” Fatigue Fract. Eng. Mater. Struct., 24, No. 7, 461–473 (2001).CrossRef C. D. Lykins, S. Mall, and V. Jain, “A shear stress-based parameter for fretting fatigue crack initiation,” Fatigue Fract. Eng. Mater. Struct., 24, No. 7, 461–473 (2001).CrossRef
20.
Zurück zum Zitat H. Zhang, J. Liu, and Z. Zuo, “Numerical study of the effects of residual stress on fretting fatigue using XFEM,” Materials, 8, No. 10, 7094–7105 (2015).CrossRef H. Zhang, J. Liu, and Z. Zuo, “Numerical study of the effects of residual stress on fretting fatigue using XFEM,” Materials, 8, No. 10, 7094–7105 (2015).CrossRef
21.
Zurück zum Zitat V. E. Marchuk, “Wear resistance of discrete surfaces at fretting wear,” Visn. NAU, Issue 2 (43), 40–45 (2019). V. E. Marchuk, “Wear resistance of discrete surfaces at fretting wear,” Visn. NAU, Issue 2 (43), 40–45 (2019).
22.
Zurück zum Zitat V. E. Marchuk, O. I. Dukhota, and N. O. Naumenko, “Studies on the wear resistance of electric-spark discrete surfaces at fretting wear,” Probl. Tert. Znosh., Issue 56, 84–93 (2011). V. E. Marchuk, O. I. Dukhota, and N. O. Naumenko, “Studies on the wear resistance of electric-spark discrete surfaces at fretting wear,” Probl. Tert. Znosh., Issue 56, 84–93 (2011).
23.
Zurück zum Zitat S. Y. Sirin, K. Sirin, and E. Kaluc, “Effect of the ion nitriding surface hardening process on fatigue behavior of AISI 4340,” Mater. Charact., 59, No. 4, 351–358 (2008).CrossRef S. Y. Sirin, K. Sirin, and E. Kaluc, “Effect of the ion nitriding surface hardening process on fatigue behavior of AISI 4340,” Mater. Charact., 59, No. 4, 351–358 (2008).CrossRef
24.
Zurück zum Zitat V. M. Zinchenko, Engineering of the Gear Wheel Surface by Chemothermal Treatment Methods [in Russian], Bauman MGTU, Moscow (2001). V. M. Zinchenko, Engineering of the Gear Wheel Surface by Chemothermal Treatment Methods [in Russian], Bauman MGTU, Moscow (2001).
25.
Zurück zum Zitat J. D. Costa, J. M. Ferreira, and A. L. Ramalho, “Fatigue and fretting of ion-nitrided 34CrNiMo6 steel,” Theor. Appl. Fract. Mech., 35, No. 1, 69–79 (2001).CrossRef J. D. Costa, J. M. Ferreira, and A. L. Ramalho, “Fatigue and fretting of ion-nitrided 34CrNiMo6 steel,” Theor. Appl. Fract. Mech., 35, No. 1, 69–79 (2001).CrossRef
26.
Zurück zum Zitat B. A. Lyashenko, V. I. Mirnenko, A. V. Rutkovskii, and O. V. Rad’ko, Method of the Surface Strengthening of Steel Components with Ion-Plasma Nitriding in a Pulsed Glow Discharge [in Ukrainian], Patent 19782 Ukraine, Valid since December 15, 2006, Bul. No. 12. B. A. Lyashenko, V. I. Mirnenko, A. V. Rutkovskii, and O. V. Rad’ko, Method of the Surface Strengthening of Steel Components with Ion-Plasma Nitriding in a Pulsed Glow Discharge [in Ukrainian], Patent 19782 Ukraine, Valid since December 15, 2006, Bul. No. 12.
27.
Zurück zum Zitat G. V. Tsybanov, V. E. Marchuk, and V. V. Zhiginas, “Fretting-resistance of aircraft tribological assembly details in the conditions of alternating loads,” in: Aviation in the XXI-st Century, Safety in Aviation and Space Technology (Proc. of the 3rd World Congress, September 22–24, 2008, Kiev), Vol. 1, National Aviation University, Kiev (2008), pp. 14.14–14.17. G. V. Tsybanov, V. E. Marchuk, and V. V. Zhiginas, “Fretting-resistance of aircraft tribological assembly details in the conditions of alternating loads,” in: Aviation in the XXI-st Century, Safety in Aviation and Space Technology (Proc. of the 3rd World Congress, September 22–24, 2008, Kiev), Vol. 1, National Aviation University, Kiev (2008), pp. 14.14–14.17.
Metadaten
Titel
Effect of Textured Dentated Surfaces on 30KhGSA Steel Damage and Life at Fatigue, Fretting Fatigue, and Fretting
verfasst von
G. V. Tsyban’ov
V. E. Marchuk
O. O. Mikosyanchyk
Publikationsdatum
13.08.2019
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 3/2019
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-019-00080-x

Weitere Artikel der Ausgabe 3/2019

Strength of Materials 3/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.