Skip to main content
Erschienen in: Strength of Materials 3/2019

15.08.2019

Microstructure-Based Model for Sharp Stress Raiser-Related Fatigue Stage Length Assessment

verfasst von: O. M. Herasymchuk, A. I. Novikov

Erschienen in: Strength of Materials | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A model for evaluating the fatigue life of specimens/structure elements with sharp stress raisers/defects is presented. The model permits of computing the number of cycles to fatigue crack initiation and its growth from a sharp stress raiser to failure at a constant stress span with the only application of characteristics of static strength and microstructure of the initial material. The model can be used to assess the fatigue life of components that contain structural stress raisers and defects stemming from their manufacturing technique (surface roughness, surface cuts, scratches, and microcracks). The model reliability was verified with experimental results taken from the literature, calculations appeared to be in good agreement with experimental data. Fatigue curves to a grain-size crack initiation and to fracture of smooth specimens and those with a chemically-notched blunt raiser that simulates the casting defects in aircraft components were calculated. The two sets of specimens from a Ti–6Al–4V titanium alloy differing in the cross-section (rectangular and cylindrical) and in microstructure (different grain sizes). Smooth specimens exhibited the test surface roughness Rv = 10 and 19 μm (average dent depth), which was assumed to be a sharp raiser for calculations. The model need not long-term and labor-consuming high-cycle fatigue tests to construct the fatigue curve.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat O. M. Herasymchuk, O. V. Kononuchenko, P. E. Markovsky, and V. I. Bondarchuk, “Calculating the fatigue life of smooth specimens of two-phase titanium alloys subject to symmetric uniaxial cyclic load of constant amplitude,” Int. J. Fatigue, 83, 313–322 (2016).CrossRef O. M. Herasymchuk, O. V. Kononuchenko, P. E. Markovsky, and V. I. Bondarchuk, “Calculating the fatigue life of smooth specimens of two-phase titanium alloys subject to symmetric uniaxial cyclic load of constant amplitude,” Int. J. Fatigue, 83, 313–322 (2016).CrossRef
2.
Zurück zum Zitat O. M. Herasymchuk, “Nonlinear relationship between the fatigue limit and quantitative parameters of material microstructure,” Int. J. Fatigue, 33, 649–659 (2011).CrossRef O. M. Herasymchuk, “Nonlinear relationship between the fatigue limit and quantitative parameters of material microstructure,” Int. J. Fatigue, 33, 649–659 (2011).CrossRef
3.
Zurück zum Zitat O. M. Herasymchuk, O. V. Kononuchenko, and V. I. Bondarchuk, “Fatigue life calculation for titanium alloys considering the influence of microstructure and manufacturing defects,” Int. J. Fatigue, 81, 257–264 (2015).CrossRef O. M. Herasymchuk, O. V. Kononuchenko, and V. I. Bondarchuk, “Fatigue life calculation for titanium alloys considering the influence of microstructure and manufacturing defects,” Int. J. Fatigue, 81, 257–264 (2015).CrossRef
4.
Zurück zum Zitat K. S. Chan, “A microstructure-based fatigue-crack-initiation model,” Metall. Mater. Trans. A, 34, 43–58 (2003).CrossRef K. S. Chan, “A microstructure-based fatigue-crack-initiation model,” Metall. Mater. Trans. A, 34, 43–58 (2003).CrossRef
5.
Zurück zum Zitat P. Lukáš and M. Klesnil, “Fatigue limit of notched bodies,” Mater. Sci. Eng., 34, 61–66 (1978).CrossRef P. Lukáš and M. Klesnil, “Fatigue limit of notched bodies,” Mater. Sci. Eng., 34, 61–66 (1978).CrossRef
6.
Zurück zum Zitat H. Kitagawa and S. Takahashi, “Applicability of fracture mechanics to very small cracks or the cracks in the early stage,” in: Proc. of the Second Int. Conf. of Mechanical Behavior of Materials (August 16–20, 1976, Boston, MA), ASM, Metals Park, OH (1976), pp. 627–631. H. Kitagawa and S. Takahashi, “Applicability of fracture mechanics to very small cracks or the cracks in the early stage,” in: Proc. of the Second Int. Conf. of Mechanical Behavior of Materials (August 16–20, 1976, Boston, MA), ASM, Metals Park, OH (1976), pp. 627–631.
7.
Zurück zum Zitat O. M. Herasymchuk, “Modified KT-diagram for stress raiser-involved fatigue strength assessment,” Strength Mater., 50, No. 4, 608–619 (2018).CrossRef O. M. Herasymchuk, “Modified KT-diagram for stress raiser-involved fatigue strength assessment,” Strength Mater., 50, No. 4, 608–619 (2018).CrossRef
8.
Zurück zum Zitat M. D. Chapetti, “Fatigue propagation threshold of short cracks under constant amplitude loading,” Int. J. Fatigue, 25, 1319–1326 (2003).CrossRef M. D. Chapetti, “Fatigue propagation threshold of short cracks under constant amplitude loading,” Int. J. Fatigue, 25, 1319–1326 (2003).CrossRef
9.
Zurück zum Zitat J. Maierhofer, H. P. Gänser, and R. Pippan, “Modified Kitagawa–Takahashi diagram accounting for finite notch depths,” Int. J. Fatigue, 70, 503–509 (2015).CrossRef J. Maierhofer, H. P. Gänser, and R. Pippan, “Modified Kitagawa–Takahashi diagram accounting for finite notch depths,” Int. J. Fatigue, 70, 503–509 (2015).CrossRef
10.
Zurück zum Zitat M. H. El Haddad, T. H. Topper, and K. N. Smith, “Prediction of non propagating cracks,” Eng. Fract. Mech., 11, No. 3, 573–584 (1979).CrossRef M. H. El Haddad, T. H. Topper, and K. N. Smith, “Prediction of non propagating cracks,” Eng. Fract. Mech., 11, No. 3, 573–584 (1979).CrossRef
11.
Zurück zum Zitat O. M. Herasymchuk, “Relationship between the threshold stress intensity factor ranges of the material and the transition from short to long fatigue crack,” Strength Mater., 46, No. 3, 368–374 (2014).CrossRef O. M. Herasymchuk, “Relationship between the threshold stress intensity factor ranges of the material and the transition from short to long fatigue crack,” Strength Mater., 46, No. 3, 368–374 (2014).CrossRef
12.
Zurück zum Zitat K. S. Chan, “Variability of large-crack fatigue-crack-growth thresholds in structural alloys,” Metall. Mater. Trans. A, 35, 3721–3735 (2004).CrossRef K. S. Chan, “Variability of large-crack fatigue-crack-growth thresholds in structural alloys,” Metall. Mater. Trans. A, 35, 3721–3735 (2004).CrossRef
13.
Zurück zum Zitat BS 7910:2005. Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures, British Standard, BSI (2205). BS 7910:2005. Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures, British Standard, BSI (2205).
14.
Zurück zum Zitat R. W. Hertzberg, “A simple calculation of da/dN − ΔK data in the near threshold regime and above,” Int. J. Fracture, 64, R53–R58 (1993). R. W. Hertzberg, “A simple calculation of da/dN − ΔK data in the near threshold regime and above,” Int. J. Fracture, 64, R53–R58 (1993).
15.
Zurück zum Zitat O. M. Herasymchuk, “Microstructurally-dependent model for predicting the kinetics of physically small and long fatigue crack growth,” Int. J. Fatigue, 81, 148–161 (2015).CrossRef O. M. Herasymchuk, “Microstructurally-dependent model for predicting the kinetics of physically small and long fatigue crack growth,” Int. J. Fatigue, 81, 148–161 (2015).CrossRef
16.
Zurück zum Zitat A. J. McEvily, M. Endo, and Y. Murakami, “On the \( \sqrt{area} \) relationship and the short fatigue threshold,” Fatigue Fract. Eng. Mater. Struct., 26, 269–278 (2003). A. J. McEvily, M. Endo, and Y. Murakami, “On the \( \sqrt{area} \) relationship and the short fatigue threshold,” Fatigue Fract. Eng. Mater. Struct., 26, 269–278 (2003).
17.
Zurück zum Zitat K. Sadananda, S. Sarkar, D. Kujawski, and A. K. Vasudevan, “A two-parameter analysis of S–N fatigue life using Δσ and σmax,” Int. J. Fatigue, 31, 1648–1659 (2009). K. Sadananda, S. Sarkar, D. Kujawski, and A. K. Vasudevan, “A two-parameter analysis of S–N fatigue life using Δσ and σmax,” Int. J. Fatigue, 31, 1648–1659 (2009).
18.
Zurück zum Zitat C. A. Rodopoulos, J.-H. Choi, E. R. de los Rios, and J. R. Yates, “Stress ratio and the fatigue damage map –Part I: Modelling,” Int. J. Fatigue, 26, 739–746 (2004).CrossRef C. A. Rodopoulos, J.-H. Choi, E. R. de los Rios, and J. R. Yates, “Stress ratio and the fatigue damage map –Part I: Modelling,” Int. J. Fatigue, 26, 739–746 (2004).CrossRef
19.
Zurück zum Zitat C. A. Rodopoulos, J.-H. Choi, E. R. de los Rios and J. R. Yates, “Stress ratio and the fatigue damage map – Part II: The 2024-T351 aluminium alloy,” Int. J. Fatigue, 26, 747–752 (2004). C. A. Rodopoulos, J.-H. Choi, E. R. de los Rios and J. R. Yates, “Stress ratio and the fatigue damage map – Part II: The 2024-T351 aluminium alloy,” Int. J. Fatigue, 26, 747–752 (2004).
20.
Zurück zum Zitat G. Léopold, Y. Nadot, T. Billaudeau, and J. Mendez, “Influence of artificial and casting defects on fatigue strength of moulded components in Ti-6Al-4V alloy,” Fatigue Fract. Eng. Mater. Struct., 38, 1026–1041 (2015). G. Léopold, Y. Nadot, T. Billaudeau, and J. Mendez, “Influence of artificial and casting defects on fatigue strength of moulded components in Ti-6Al-4V alloy,” Fatigue Fract. Eng. Mater. Struct., 38, 1026–1041 (2015).
Metadaten
Titel
Microstructure-Based Model for Sharp Stress Raiser-Related Fatigue Stage Length Assessment
verfasst von
O. M. Herasymchuk
A. I. Novikov
Publikationsdatum
15.08.2019
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 3/2019
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-019-00082-9

Weitere Artikel der Ausgabe 3/2019

Strength of Materials 3/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.