Skip to main content
Erschienen in: Strength of Materials 3/2019

13.08.2019

Physical Simulation-Based Characterization of HAZ Properties in Steels. Part 1. High-Strength Steels and Their Hardness Profiling

verfasst von: R. P. S. Sisodia, M. Gáspár

Erschienen in: Strength of Materials | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the vehicle industry, there is an increasing demand for wider application of high-strength steels. New generations of high-strength steels, with higher strength and toughness properties, are continuously developed by the steel producers. They provide good strength-to-weight ratios, acceptable weldability, improved toughness, and sufficient deformation capacity. However, the weldability of high-strength steels has still challenges which are as follows: cold cracking sensitivity; reduction of strength and toughness of heat affected zone (HAZ); filler material selection. In the HAZ of high-strength steels, hardened and softened zones can be found, where the base material can significantly lose its outstanding mechanical properties. In real welded joints, HAZ properties can be limitedly analyzed by conventional material tests. Therefore, physical simulators (i.e., Gleeble) were developed for the examination of different HAZ areas. Another motivation for the application of physical simulators is the time- and material-saving, as compared to real welding experiments. In this study, the weldability, especially HAZ properties of two high-strength structural steels (S960QL and S960M) from the same strength category (Rp0.2 = 960 MPa) and thickness (t = 15 mm) were compared and discussed. Two relevant technological variants for gas metal arc welding (GMAW), t8.5/5 = 5 and 30 s were applied during HAZ simulations and the effect of cooling time on the critical HAZ areas was analyzed. The properties of the selected coarse-grained, fine-grained, intercritical, and subcritical zones were investigated by the optical microscopy and hardness tests.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Romeijn, Steel Bridges, Part 1, TU Delft (2006). A. Romeijn, Steel Bridges, Part 1, TU Delft (2006).
2.
Zurück zum Zitat R. N. Jha, K. Dutta, and K. K. Ray, “Effect of tempering on mechanical properties of V-added AISI 4335 steel,” ISIJ Int., 50, No. 4, 607–612 (2010).CrossRef R. N. Jha, K. Dutta, and K. K. Ray, “Effect of tempering on mechanical properties of V-added AISI 4335 steel,” ISIJ Int., 50, No. 4, 607–612 (2010).CrossRef
3.
Zurück zum Zitat Z. M. Shi, K. Liu, M. Q. Wang, et al., “Effect of tensile deformation of austenite on the morphology and strength of lath martensite,” Met. Mater. Int., 18, No. 2, 317–320 (2012).CrossRef Z. M. Shi, K. Liu, M. Q. Wang, et al., “Effect of tensile deformation of austenite on the morphology and strength of lath martensite,” Met. Mater. Int., 18, No. 2, 317–320 (2012).CrossRef
4.
Zurück zum Zitat F. Zhen, K. Zhang, Z. L. Guo, and J. B. Qu, “Effect of martensite fine structure on mechanical properties of an 1100 MPa grade ultra-high strength steel,” J. Iron Steel Res. Int., 22, No. 7, 645–651 (2015), https://doi.org/https://doi.org/10.1016/S1006-706X(15)30052-2. F. Zhen, K. Zhang, Z. L. Guo, and J. B. Qu, “Effect of martensite fine structure on mechanical properties of an 1100 MPa grade ultra-high strength steel,” J. Iron Steel Res. Int., 22, No. 7, 645–651 (2015), https://​doi.​org/​https://​doi.​org/​10.​1016/​S1006-706X(15)30052-2.
6.
Zurück zum Zitat M. S. Wæglowski, “Modern toughened steels – their properties and advantages,” Biuletyn Instytutu Spawalnictwa, NR 02, 25–36 (2012). M. S. Wæglowski, “Modern toughened steels – their properties and advantages,” Biuletyn Instytutu Spawalnictwa, NR 02, 25–36 (2012).
7.
Zurück zum Zitat D. A. Porter, “Weldable high-strength steels: challenges and engineering applications,” in: IIW 2015 Int. Conf. on High Strength Steels – Challenges and Applications (July 2–3, 2015, Helsinki, Finland), Paper IIW 2015 0102 (2015). D. A. Porter, “Weldable high-strength steels: challenges and engineering applications,” in: IIW 2015 Int. Conf. on High Strength Steels – Challenges and Applications (July 2–3, 2015, Helsinki, Finland), Paper IIW 2015 0102 (2015).
8.
Zurück zum Zitat M. Klein, M. Sonnleitner, and P. Stiaszny, “Alform®x-treme innovation,” 1st Alform® Welding Day, Linz, Austria (2012). M. Klein, M. Sonnleitner, and P. Stiaszny, “Alform®x-treme innovation,” 1st Alform® Welding Day, Linz, Austria (2012).
9.
Zurück zum Zitat E. Gogua, Use of High Strength Steel Grades for Economical Bridge Design, Delft University of Technology (2012). E. Gogua, Use of High Strength Steel Grades for Economical Bridge Design, Delft University of Technology (2012).
10.
Zurück zum Zitat Á. Dobosy and J. Lukács, “Welding properties and fatigue resistance of S690QL high strength steels,” Mater. Sci. Forum, 812, 29–34 (2015).CrossRef Á. Dobosy and J. Lukács, “Welding properties and fatigue resistance of S690QL high strength steels,” Mater. Sci. Forum, 812, 29–34 (2015).CrossRef
11.
Zurück zum Zitat M. Gáspár and R. P. S. Sisodia, “Weldability analysis of Q+T and TMCP high strength steels by physical simulation,” in: 70th IIW Annual Assembly and Int. Conf. (June 29–30, 2017, Shanghai, China) (2017), pp. B166–B170. M. Gáspár and R. P. S. Sisodia, “Weldability analysis of Q+T and TMCP high strength steels by physical simulation,” in: 70th IIW Annual Assembly and Int. Conf. (June 29–30, 2017, Shanghai, China) (2017), pp. B166–B170.
12.
Zurück zum Zitat Ruukki Metals in Hot Rolled Steel Products, General Presentation (2011). Ruukki Metals in Hot Rolled Steel Products, General Presentation (2011).
13.
Zurück zum Zitat D. Dutta, J. Wardenier, N. Yeomans, et al., CIDECT Design Guide for Fabrication, Assembly and Erection of Hollow Section Structures, TÜV-Verlag, Köln (1998). D. Dutta, J. Wardenier, N. Yeomans, et al., CIDECT Design Guide for Fabrication, Assembly and Erection of Hollow Section Structures, TÜV-Verlag, Köln (1998).
14.
Zurück zum Zitat L. Kuzsella, J. Lukács, and K. Szücs, “Nil-strength temperature and hot tensile tests on S960QL highstrength low-alloy steel,” Prod. Process. Syst., 6, No. 1, 67–78 (2013). L. Kuzsella, J. Lukács, and K. Szücs, “Nil-strength temperature and hot tensile tests on S960QL highstrength low-alloy steel,” Prod. Process. Syst., 6, No. 1, 67–78 (2013).
15.
Zurück zum Zitat M. Gáspár, A. Balogh and J. Lukács, “Toughness examination of physically simulated S960QL HAZ by a special drilled specimen,” in: K. Jarmai and B. Bollo (Eds.), Vehicle and Automotive Engineering. Lecture Notes in Mechanical Engineering, Springer (2017), pp. 469–481. M. Gáspár, A. Balogh and J. Lukács, “Toughness examination of physically simulated S960QL HAZ by a special drilled specimen,” in: K. Jarmai and B. Bollo (Eds.), Vehicle and Automotive Engineering. Lecture Notes in Mechanical Engineering, Springer (2017), pp. 469–481.
16.
Zurück zum Zitat E. Kalácska, K. Májlinger, R. E Fábián, and P. R. Spena, “MIG-welding of dissimilar advanced high strength steel sheets,” Mater. Sci. Forum, 885, 80–85 (2017).CrossRef E. Kalácska, K. Májlinger, R. E Fábián, and P. R. Spena, “MIG-welding of dissimilar advanced high strength steel sheets,” Mater. Sci. Forum, 885, 80–85 (2017).CrossRef
18.
Zurück zum Zitat Á. Dobosy and J. Lukács, “The effect of filler material choice on the high cycle fatigue resistance of high strength steel welded joints,” Mater. Sci. Forum, 885, 111–116 (2017).CrossRef Á. Dobosy and J. Lukács, “The effect of filler material choice on the high cycle fatigue resistance of high strength steel welded joints,” Mater. Sci. Forum, 885, 111–116 (2017).CrossRef
19.
Zurück zum Zitat K. Májlinger, E. Kalácska, and P. R. Spena, “Gas metal arc welding of dissimilar AHSS sheets,” Mater. Design, 109, 615–621 (2016).CrossRef K. Májlinger, E. Kalácska, and P. R. Spena, “Gas metal arc welding of dissimilar AHSS sheets,” Mater. Design, 109, 615–621 (2016).CrossRef
20.
Zurück zum Zitat Z. Feng, Challenges and Opportunities in Joining Advanced High Strength Steels, Oak Ridge National Laboratory. Z. Feng, Challenges and Opportunities in Joining Advanced High Strength Steels, Oak Ridge National Laboratory.
21.
Zurück zum Zitat D. Wojnowski, Y. K. Oh, and J. E. Indacochea, “Metallurgical assessment of the softened HAZ region during multipass welding,” J. Manuf. Sci. Eng., 122, No. 2, 310–315 (2000).CrossRef D. Wojnowski, Y. K. Oh, and J. E. Indacochea, “Metallurgical assessment of the softened HAZ region during multipass welding,” J. Manuf. Sci. Eng., 122, No. 2, 310–315 (2000).CrossRef
22.
Zurück zum Zitat G. Madhusudan Reddy, T. Mohandas, and K. K. Papukutty, “Effect of welding process on the ballistic performance of high strength low-alloy steel weldments,” J. Mater. Process. Tech., 74, Nos. 1–3, 27–35 (1998).CrossRef G. Madhusudan Reddy, T. Mohandas, and K. K. Papukutty, “Effect of welding process on the ballistic performance of high strength low-alloy steel weldments,” J. Mater. Process. Tech., 74, Nos. 1–3, 27–35 (1998).CrossRef
23.
Zurück zum Zitat G. Magudeeswaran, V. Balasubramanian, G. Madhusudhan Reddy, and T. S. Balasubramanian, “Effect of welding processes and consumables on tensile and impact properties of high strength quenched and tempered steel joints,” J. Iron Steel Res. Int., 15, No. 6, 87–94 (2008).CrossRef G. Magudeeswaran, V. Balasubramanian, G. Madhusudhan Reddy, and T. S. Balasubramanian, “Effect of welding processes and consumables on tensile and impact properties of high strength quenched and tempered steel joints,” J. Iron Steel Res. Int., 15, No. 6, 87–94 (2008).CrossRef
24.
Zurück zum Zitat P. Nevasmaa, Evaluation of HAZ Toughness Properties in Modern Low-Carbon Low-Impurity 420, 550 and 700 MPa Yield Strength Thermomechanically Processed Steels with Emphasis on Local Brittle Zones, University of Oulu (1996). P. Nevasmaa, Evaluation of HAZ Toughness Properties in Modern Low-Carbon Low-Impurity 420, 550 and 700 MPa Yield Strength Thermomechanically Processed Steels with Emphasis on Local Brittle Zones, University of Oulu (1996).
25.
Zurück zum Zitat H. K. D. H. Bhadeshia and R. W. K. Honeycombe, Steels Microstructure and Properties, 3rd edn, Butterworth–Heinemann (2006). H. K. D. H. Bhadeshia and R. W. K. Honeycombe, Steels Microstructure and Properties, 3rd edn, Butterworth–Heinemann (2006).
26.
Zurück zum Zitat M. Gáspár, A. Balogh, and I. Sas, “Physical simulation aided process optimisation aimed sufficient HAZ toughness for quenched and tempered AHSS,” in: IIW 2015 Int. Conf. on High Strength Steels – Challenges and Applications (July 2–3, 2015, Helsinki, Finland), Paper IIW 2015 1504 (2015). M. Gáspár, A. Balogh, and I. Sas, “Physical simulation aided process optimisation aimed sufficient HAZ toughness for quenched and tempered AHSS,” in: IIW 2015 Int. Conf. on High Strength Steels – Challenges and Applications (July 2–3, 2015, Helsinki, Finland), Paper IIW 2015 1504 (2015).
27.
Zurück zum Zitat S. J. Heikkilä, D. A. Porter, L. P. Karjalainen, et al., “Hardness profiles of quenched steel heat affected zones,” Mater. Sci. Forum, 762, 722–727 (2013).CrossRef S. J. Heikkilä, D. A. Porter, L. P. Karjalainen, et al., “Hardness profiles of quenched steel heat affected zones,” Mater. Sci. Forum, 762, 722–727 (2013).CrossRef
28.
Zurück zum Zitat Y. Adonyi, “Heat-affected zone characterization by physical simulations: An overview on the use of the Gleeble discusses the advantages and disadvantages of thermomechanical simulation,” Weld. J., 85, No. 10, 42–47 (2006). Y. Adonyi, “Heat-affected zone characterization by physical simulations: An overview on the use of the Gleeble discusses the advantages and disadvantages of thermomechanical simulation,” Weld. J., 85, No. 10, 42–47 (2006).
29.
Zurück zum Zitat QuikSimTM Software, Heat Affected Zone Programming Manual: Heat Affected Zone (HAZ) Programming. QuikSimTM Software, Heat Affected Zone Programming Manual: Heat Affected Zone (HAZ) Programming.
30.
Zurück zum Zitat K. Hulka, A. Kern, and U. Schriever, “Application of niobium in quenched and tempered high-strength steels,” Mater. Sci. Forum, 500–501, 519–526 (2005).CrossRef K. Hulka, A. Kern, and U. Schriever, “Application of niobium in quenched and tempered high-strength steels,” Mater. Sci. Forum, 500–501, 519–526 (2005).CrossRef
32.
Zurück zum Zitat N. N. Rykalin, Calculation of Heat Flow in Welding [in Russian], GNTIML, Moscow (1951). N. N. Rykalin, Calculation of Heat Flow in Welding [in Russian], GNTIML, Moscow (1951).
33.
Zurück zum Zitat R. P. S. Sisodia and N. Berrah, “Analysing HAZ softening of quenched and tempered steel by physical simulation,” in: Inter Talent UNIDEB Conference (April 7–8, 2016, University of Debrecen, Hungary). R. P. S. Sisodia and N. Berrah, “Analysing HAZ softening of quenched and tempered steel by physical simulation,” in: Inter Talent UNIDEB Conference (April 7–8, 2016, University of Debrecen, Hungary).
34.
Zurück zum Zitat R. P. S. Sisodia, Comparative Analysis about the Weldability of Q+T and TMCP Steels by Physical Simulation, MSc Thesis, University of Miskolc, Hungary (2017). R. P. S. Sisodia, Comparative Analysis about the Weldability of Q+T and TMCP Steels by Physical Simulation, MSc Thesis, University of Miskolc, Hungary (2017).
35.
Zurück zum Zitat M. Gáspár, Physical Simulation Based Development of Welding Technology for Quenched and Tempered Structural High-Strength Steels, PhD Thesis, University of Miskolc, Hungary (2016). M. Gáspár, Physical Simulation Based Development of Welding Technology for Quenched and Tempered Structural High-Strength Steels, PhD Thesis, University of Miskolc, Hungary (2016).
36.
Zurück zum Zitat P. Jambor, Physical Simulation Based Analysis of the Weldability of Thermomechanically Rolled High-Strength Steel [in Hungarian], MSc Thesis, University of Miskolc, Hungary (2017). P. Jambor, Physical Simulation Based Analysis of the Weldability of Thermomechanically Rolled High-Strength Steel [in Hungarian], MSc Thesis, University of Miskolc, Hungary (2017).
37.
Zurück zum Zitat M. Gáspár and A. Balogh, “GMAW experiments for advanced (Q+T) high strength steels,” Product. Process. Syst., 6, No. (1), 9–24 (2013). M. Gáspár and A. Balogh, “GMAW experiments for advanced (Q+T) high strength steels,” Product. Process. Syst., 6, No. (1), 9–24 (2013).
Metadaten
Titel
Physical Simulation-Based Characterization of HAZ Properties in Steels. Part 1. High-Strength Steels and Their Hardness Profiling
verfasst von
R. P. S. Sisodia
M. Gáspár
Publikationsdatum
13.08.2019
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 3/2019
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-019-00094-5

Weitere Artikel der Ausgabe 3/2019

Strength of Materials 3/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.