Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 4/2020

20.03.2020

Effects of Cr Content on Microstructure and Mechanical Properties of WMoNbTiCr High-Entropy Alloys

verfasst von: JianHui Yan, MaoJian Li, Kailing Li, JingWen Qiu, Yuanjun Guo

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Refractory high-entropy alloys (HEAs) are promising structure materials in elevated temperature. In the present studies, refractory WMoNbTiCr HEAs with different Cr content were prepared by mechanical alloying followed spark plasma sintering. The effects of chromium content on microstructure and room temperature mechanical properties of WMoNbTiCr HEAs were investigated. The results showed that there are three body-centered cubic (BCC) solid solution phases in the ball-milled powders, including enriching with W, Nb, and Cr solid solution phases, respectively. The bulk WMoNbTiCr alloys were mainly composed of disordered BCC phases and a small amount of Laves phase. As the content of Cr increased from 5 to 20 at.%, the relative content of Laves phase increased correspondingly. With an increase in Cr content, the hardness, fracture toughness, compressive fracture strength, and compressive strain of the WMoNbTiCr HEAs increased, exhibiting the maximum values of 9.73 GPa, 6.68 MPa m1/2, 2116 MPa, and 5.1%, respectively. With an addition of 20 at.% Cr, the WMoNbTiCr HEA exhibited a more refined microstructure. The increasing fracture toughness and compressive strain were mainly attributed to the grain refinement. However, the solid solution strengthening, the second-phase (Laves phase) strengthening, and microstructure refinement resulted in an increase in the hardness and compressive fracture strength.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured and High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6, p 299–303CrossRef J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured and High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6, p 299–303CrossRef
2.
Zurück zum Zitat O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Refractory High-Entropy Alloys, Intermetallics, 2010, 18, p 1758–1765CrossRef O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Refractory High-Entropy Alloys, Intermetallics, 2010, 18, p 1758–1765CrossRef
3.
Zurück zum Zitat D. Ma, M. Yao, K.G. Pradeep, C.C. Tasan, H. Springer, and D. Raabe, Phase Stability of Non-equiatomic CoCrFeMnNi High Entropy Alloys, Acta Mater., 2015, 98, p 288–296CrossRef D. Ma, M. Yao, K.G. Pradeep, C.C. Tasan, H. Springer, and D. Raabe, Phase Stability of Non-equiatomic CoCrFeMnNi High Entropy Alloys, Acta Mater., 2015, 98, p 288–296CrossRef
4.
Zurück zum Zitat Y. Zhang, X. Yang, and P.K. Liaw, Alloy Design and Properties Optimization of High-Entropy Alloys, JOM, 2012, 64, p 838–930 Y. Zhang, X. Yang, and P.K. Liaw, Alloy Design and Properties Optimization of High-Entropy Alloys, JOM, 2012, 64, p 838–930
5.
Zurück zum Zitat D. Miracle, J.D. Miller, O. Senkov, and C. Woodward, Exploration and Development of High Entropy Alloys for Structural Applications, Entropy, 2014, 16, p 494–525CrossRef D. Miracle, J.D. Miller, O. Senkov, and C. Woodward, Exploration and Development of High Entropy Alloys for Structural Applications, Entropy, 2014, 16, p 494–525CrossRef
6.
Zurück zum Zitat B. Gorr, F. Mueller, H.J. Christ, T. Mueller, H. Chen, A. Kauffmann, and M. Heilmaier, High Temperature Oxidation Behavior of an Equimolar Refractory Metal-Based Alloy 20Nb-20Mo-20Cr-20Ti-20Al With and Without Si Addition, J. Alloys Compd., 2016, 688, p 468–477CrossRef B. Gorr, F. Mueller, H.J. Christ, T. Mueller, H. Chen, A. Kauffmann, and M. Heilmaier, High Temperature Oxidation Behavior of an Equimolar Refractory Metal-Based Alloy 20Nb-20Mo-20Cr-20Ti-20Al With and Without Si Addition, J. Alloys Compd., 2016, 688, p 468–477CrossRef
7.
Zurück zum Zitat H. Chen, A. Kauffmann, B. Gorr, D. Schliephake, C. Seemüller, J.N. Wagner, H.-J. Christ, and M. Heilmaier, Microstructure and Mechanical Properties at Elevated Temperatures of a New Al-Containing Refractory High-Entropy Alloy Nb-Mo-Cr-Ti-Al, J. Alloys Compd., 2016, 661, p 206–215CrossRef H. Chen, A. Kauffmann, B. Gorr, D. Schliephake, C. Seemüller, J.N. Wagner, H.-J. Christ, and M. Heilmaier, Microstructure and Mechanical Properties at Elevated Temperatures of a New Al-Containing Refractory High-Entropy Alloy Nb-Mo-Cr-Ti-Al, J. Alloys Compd., 2016, 661, p 206–215CrossRef
8.
Zurück zum Zitat C.C. Juan, M.H. Tsai, C.W. Tsai, C.M. Lin, W.R. Wang, C.C. Yang, S.K. Chen, S.J. Lin, and J.W. Yeh, Enhanced Mechanical Properties of HfMoTaTiZr and HfMoNbTaTiZr Refractory High-Entropy Alloys, Intermetallics, 2015, 62, p 76–83CrossRef C.C. Juan, M.H. Tsai, C.W. Tsai, C.M. Lin, W.R. Wang, C.C. Yang, S.K. Chen, S.J. Lin, and J.W. Yeh, Enhanced Mechanical Properties of HfMoTaTiZr and HfMoNbTaTiZr Refractory High-Entropy Alloys, Intermetallics, 2015, 62, p 76–83CrossRef
9.
Zurück zum Zitat C.C. Juan, K.K. Tseng, W.L. Hsu, M.H. Tsai, C.W. Tsai, C.M. Lin, S.K. Chen, S.J. Lin, and J.W. Yeh, Solution Strengthening of Ductile Refractory HfMoxNbTaTiZr High-Entropy Alloys, Mater. Lett., 2016, 175, p 284–287CrossRef C.C. Juan, K.K. Tseng, W.L. Hsu, M.H. Tsai, C.W. Tsai, C.M. Lin, S.K. Chen, S.J. Lin, and J.W. Yeh, Solution Strengthening of Ductile Refractory HfMoxNbTaTiZr High-Entropy Alloys, Mater. Lett., 2016, 175, p 284–287CrossRef
10.
Zurück zum Zitat O.N. Senkov, S.V. Senkova, C. Woodward, and D.B. Miracle, Low-Density, Refractory Multi-principal Element Alloys of the Cr-Nb-Ti-V-Zr System: Microstructure and Phase Analysis, Acta Mater., 2013, 61, p 1545–1557CrossRef O.N. Senkov, S.V. Senkova, C. Woodward, and D.B. Miracle, Low-Density, Refractory Multi-principal Element Alloys of the Cr-Nb-Ti-V-Zr System: Microstructure and Phase Analysis, Acta Mater., 2013, 61, p 1545–1557CrossRef
11.
Zurück zum Zitat O.N. Senkov, S.V. Senkova, D.B. Miracle, and C. Woodward, Mechanical Properties of Low-Density, Refractory Multi-principal Element Alloys of the Cr-Nb-Ti-V-Zr System, Mater. Sci. Eng. A, 2013, 565, p 51–62CrossRef O.N. Senkov, S.V. Senkova, D.B. Miracle, and C. Woodward, Mechanical Properties of Low-Density, Refractory Multi-principal Element Alloys of the Cr-Nb-Ti-V-Zr System, Mater. Sci. Eng. A, 2013, 565, p 51–62CrossRef
12.
Zurück zum Zitat N.D. Stepanov, N.Y. Yurchenko, D.V. Skibin, M.A. Tikhonovsky, and G.A. Salishchev, Structure and Mechanical Properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) High Entropy Alloys, J. Alloys Compd., 2015, 652, p 266–280CrossRef N.D. Stepanov, N.Y. Yurchenko, D.V. Skibin, M.A. Tikhonovsky, and G.A. Salishchev, Structure and Mechanical Properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) High Entropy Alloys, J. Alloys Compd., 2015, 652, p 266–280CrossRef
13.
Zurück zum Zitat J.H. Yan, K.L. Li, Y. Wang, and J.W. Qiu, Microstructure and Mechanical Properties of WMoNbCrTi HEAs Sintered from the Powders Milled for Different Durations, JOM, 2019, 71, p 2489–2497CrossRef J.H. Yan, K.L. Li, Y. Wang, and J.W. Qiu, Microstructure and Mechanical Properties of WMoNbCrTi HEAs Sintered from the Powders Milled for Different Durations, JOM, 2019, 71, p 2489–2497CrossRef
14.
Zurück zum Zitat J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, and S.J. Lin, Anomalous Decrease in X-Ray Diffraction Intensities of Cu-Ni-Al-Co-Cr-Fe-Si Alloy Systems with Multi-principal Elements, Mater. Chem. Phys., 2007, 103, p 41–46CrossRef J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, and S.J. Lin, Anomalous Decrease in X-Ray Diffraction Intensities of Cu-Ni-Al-Co-Cr-Fe-Si Alloy Systems with Multi-principal Elements, Mater. Chem. Phys., 2007, 103, p 41–46CrossRef
15.
Zurück zum Zitat J.W. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys, JOM, 2013, 65, p 1759–1771CrossRef J.W. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys, JOM, 2013, 65, p 1759–1771CrossRef
16.
Zurück zum Zitat H. Wen, Y. Zhao, Y. Li, O. Ertorer, K.M. Nesterov, R.K. Islamgaliev, R.Z. Valiev, and E.J. Lavernia, High-Pressure Torsion-Induced Grain Growth and Detwinning in Cryomilled Cu Powders, Philos. Mag., 2010, 34, p 4541–4550CrossRef H. Wen, Y. Zhao, Y. Li, O. Ertorer, K.M. Nesterov, R.K. Islamgaliev, R.Z. Valiev, and E.J. Lavernia, High-Pressure Torsion-Induced Grain Growth and Detwinning in Cryomilled Cu Powders, Philos. Mag., 2010, 34, p 4541–4550CrossRef
17.
Zurück zum Zitat H. Wen, R.K. Islamgaliev, K.M. Nesterov, Z.V. Ruslan, and J.L. Enrique, Dynamic Balance Between Grain Refinement and Grain Growth during High-Pressure Torsion of Cu Powders, Philos. Mag. Lett., 2013, 93, p 481–489CrossRef H. Wen, R.K. Islamgaliev, K.M. Nesterov, Z.V. Ruslan, and J.L. Enrique, Dynamic Balance Between Grain Refinement and Grain Growth during High-Pressure Torsion of Cu Powders, Philos. Mag. Lett., 2013, 93, p 481–489CrossRef
18.
Zurück zum Zitat M. Zhang, X.L. Zhou, and J.H. Li, Microstructure and Mechanical Properties of a Refractory CoCrMoNbTi High-Entropy Alloy, J. Mater. Eng. Perform., 2017, 26, p 1–9CrossRef M. Zhang, X.L. Zhou, and J.H. Li, Microstructure and Mechanical Properties of a Refractory CoCrMoNbTi High-Entropy Alloy, J. Mater. Eng. Perform., 2017, 26, p 1–9CrossRef
19.
Zurück zum Zitat Y. Zhang and Y.J. Zhou, Solid Solution Formation Criteria for High Entropy Alloys, Mater. Sci. Forum, 2007, 561–565, p 1337–1339CrossRef Y. Zhang and Y.J. Zhou, Solid Solution Formation Criteria for High Entropy Alloys, Mater. Sci. Forum, 2007, 561–565, p 1337–1339CrossRef
20.
Zurück zum Zitat O. Senkov, D. Isheim, D. Seidman, and A.L. Pilchak, Development of a Refractory High Entropy Superalloy, Entropy, 2016, 18, p 102CrossRef O. Senkov, D. Isheim, D. Seidman, and A.L. Pilchak, Development of a Refractory High Entropy Superalloy, Entropy, 2016, 18, p 102CrossRef
21.
Zurück zum Zitat S. Guo, Phase Selection Rules for Cast High Entropy Alloys: An Overview, Mater. Sci. Technol., 2015, 31, p 1223–1230CrossRef S. Guo, Phase Selection Rules for Cast High Entropy Alloys: An Overview, Mater. Sci. Technol., 2015, 31, p 1223–1230CrossRef
22.
Zurück zum Zitat I. Toda-Caraballo and P.E.J. Rivera-Díaz Castillo, Modelling Solid Solution Hardening in High Entropy Alloys, Acta Mater., 2015, 85, p 14–23CrossRef I. Toda-Caraballo and P.E.J. Rivera-Díaz Castillo, Modelling Solid Solution Hardening in High Entropy Alloys, Acta Mater., 2015, 85, p 14–23CrossRef
23.
Zurück zum Zitat J.H. Yan, H.A. Zhang, S.W. Tang, and J.G. Xu, Room Temperature Mechanical Properties and High Temperature Oxidation Behavior of MoSi2 Matrix Composite Reinforced by Adding La2O3 and Mo5Si3, Mater Chatact., 2009, 60, p 447–450CrossRef J.H. Yan, H.A. Zhang, S.W. Tang, and J.G. Xu, Room Temperature Mechanical Properties and High Temperature Oxidation Behavior of MoSi2 Matrix Composite Reinforced by Adding La2O3 and Mo5Si3, Mater Chatact., 2009, 60, p 447–450CrossRef
24.
Zurück zum Zitat K.T. Faber and A.G. Evans, Crack Deflection Process—I. Theory, Acta Metall., 1983, 31, p 565–576CrossRef K.T. Faber and A.G. Evans, Crack Deflection Process—I. Theory, Acta Metall., 1983, 31, p 565–576CrossRef
Metadaten
Titel
Effects of Cr Content on Microstructure and Mechanical Properties of WMoNbTiCr High-Entropy Alloys
verfasst von
JianHui Yan
MaoJian Li
Kailing Li
JingWen Qiu
Yuanjun Guo
Publikationsdatum
20.03.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 4/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-04744-7

Weitere Artikel der Ausgabe 4/2020

Journal of Materials Engineering and Performance 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.