Skip to main content
Erschienen in: Water Resources Management 3/2022

24.01.2022

Effects of Diversion Wall on the Hydrodynamics and Withdrawal Sediment of A Lateral Intake

verfasst von: Wenlong Zhao, Jian Zhang, Wei He, Lin shi, Xuyun Chen

Erschienen in: Water Resources Management | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Lateral intake is widely built in water transfer and water supply projects. Hydrodynamics and withdrawal sediment characteristics of a lateral intake are crucial to safe and stable operation. In this study, an experiment model and a 3-D simulation model were established and validated. Hydrodynamic characteristics were investigated and improved by experiment. Additionally, the withdrawal sediment flow rate \({Q}_{s}\), withdrawal sediment quantity \(\mathrm{V}\), maximum withdrawal sediment flow rate \({Q}_{sm}\) were obtained by numerical simulation. Under different sediment thickness \({h}_{s}\) scenarios, the diversion wall was beneficial to inhibit sediment entering the intake. The range of \(\mathrm{V}\) was from 52.3 to 69.26 ton under the scenarios without the diversion wall, and the range of \(\mathrm{V}\) was from 50.97 to 67.51 ton under the scenarios with the diversion wall. The larger the \({h}_{s}\) was, the higher \(\mathrm{V}\) and \({Q}_{sm}\) were, the more obvious inhibitory effect of the diversion wall on withdrawal sediment was. Meanwhile, the mechanism analysis of withdrawal sediment change was explained. Under different withdrawal flow rate \({Q}_{in}\) scenarios, the inhibitory effect of the diversion wall on withdrawal sediment was also applicable. When \({Q}_{in}\) increased from 10 to 60 m3/s, the range of \({Q}_{sm}\) was from 0.556 to 8.319 ton/s under the scenarios without the diversion wall, and the range of \({Q}_{sm}\) was from 0.524 to 8.038 ton/s under the scenarios with the diversion wall. The larger the \({Q}_{in}\) was, the more obvious inhibitory effect was. This research represents an advance in lateral withdrawal sediment and provides support for further engineering studies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abhash A, Pandey KK (2021) Experimental and numerical study of discharge capacity and sediment profile upstream of piano key weirs with different plan geometries. Water Resour Manag 35(5):1529–1546CrossRef Abhash A, Pandey KK (2021) Experimental and numerical study of discharge capacity and sediment profile upstream of piano key weirs with different plan geometries. Water Resour Manag 35(5):1529–1546CrossRef
Zurück zum Zitat Alomari NK, Yusuf B, Mohammad TA, Ghazali AH (2019) Influence of diversion angle on water and sediment flow into diversion channel. Int J Sediment Res 35(6):600–608CrossRef Alomari NK, Yusuf B, Mohammad TA, Ghazali AH (2019) Influence of diversion angle on water and sediment flow into diversion channel. Int J Sediment Res 35(6):600–608CrossRef
Zurück zum Zitat Andreini A, Bianchini C, Puggelli S, Demoulin FX (2016) Development of a turbulent liquid flux model for Eulerian-Eulerian multiphase flow simulations. Int J Multiphas Flow 81:88–103CrossRef Andreini A, Bianchini C, Puggelli S, Demoulin FX (2016) Development of a turbulent liquid flux model for Eulerian-Eulerian multiphase flow simulations. Int J Multiphas Flow 81:88–103CrossRef
Zurück zum Zitat Baltazar J, Alves E, Bombar G, Cardoso AH (2021) Effect of a submerged vane-field on the flow pattern of a movable bed channel with a 90° lateral diversion. Water-Sui 13(6):828 Baltazar J, Alves E, Bombar G, Cardoso AH (2021) Effect of a submerged vane-field on the flow pattern of a movable bed channel with a 90° lateral diversion. Water-Sui 13(6):828
Zurück zum Zitat Beddaa H, Ouazi I, Ben Fraj A, Lavergne F, Torrenti J (2020) Reuse potential of dredged river sediments in concrete: Effect of sediment variability. J Clean Prod 265:121665 Beddaa H, Ouazi I, Ben Fraj A, Lavergne F, Torrenti J (2020) Reuse potential of dredged river sediments in concrete: Effect of sediment variability. J Clean Prod 265:121665
Zurück zum Zitat Cordier F, Tassi P, Claude N, Crosato A, Rodrigues S, Pham Van Bang D (2020) Bar pattern and sediment sorting in a channel contraction/expansion area: Application to the Loire River at Bréhémont (France). Adv Water Resour 140:103580 Cordier F, Tassi P, Claude N, Crosato A, Rodrigues S, Pham Van Bang D (2020) Bar pattern and sediment sorting in a channel contraction/expansion area: Application to the Loire River at Bréhémont (France). Adv Water Resour 140:103580
Zurück zum Zitat de Ruijsscher TV, Hoitink AJF, Naqshband S, Paarlberg AJ (2019) Bed morphodynamics at the intake of a side channel controlled by sill geometry. Adv Water Resour 134:103452 de Ruijsscher TV, Hoitink AJF, Naqshband S, Paarlberg AJ (2019) Bed morphodynamics at the intake of a side channel controlled by sill geometry. Adv Water Resour 134:103452
Zurück zum Zitat Domfeh MK, Gyamfi S, Amo-Boateng M, Andoh R, Ofosu EA, Tabor G (2020) Free surface vortices at hydropower intakes: A state-of-the-art review. Sci Afr 8:e355 Domfeh MK, Gyamfi S, Amo-Boateng M, Andoh R, Ofosu EA, Tabor G (2020) Free surface vortices at hydropower intakes: A state-of-the-art review. Sci Afr 8:e355
Zurück zum Zitat Farshidnia S, Saneie M, Hajikandi H, Rostami M (2020) Experimental investigation of impact of length and height of parallel skimming walls on controlling inlet sediment to lateral intake. Water Sci Technol Water Supply 20(1) Farshidnia S, Saneie M, Hajikandi H, Rostami M (2020) Experimental investigation of impact of length and height of parallel skimming walls on controlling inlet sediment to lateral intake. Water Sci Technol Water Supply 20(1)
Zurück zum Zitat He W, Jiang A, Zhang J, Xu H, Xiao Y, Chen S, Yu X (2021) Hydrodynamic characteristics of lateral withdrawal in a tidal river channel with saltwater intrusion. Ocean Eng 228:108905 He W, Jiang A, Zhang J, Xu H, Xiao Y, Chen S, Yu X (2021) Hydrodynamic characteristics of lateral withdrawal in a tidal river channel with saltwater intrusion. Ocean Eng 228:108905
Zurück zum Zitat Heidari Rad P, Kamanbedast A, Heidarnejad M, Masjedi A, Hasonizadeh H (2020) The effect of convergence and divergence on flow pattern and sediment transport in lateral intakes using physical and numerical models. Ain Shams Eng J 11(2):445–454CrossRef Heidari Rad P, Kamanbedast A, Heidarnejad M, Masjedi A, Hasonizadeh H (2020) The effect of convergence and divergence on flow pattern and sediment transport in lateral intakes using physical and numerical models. Ain Shams Eng J 11(2):445–454CrossRef
Zurück zum Zitat Herrero A, Bateman A, Medina V (2015) Water flow and sediment transport in a 90° channel diversion: an experimental study. J Hydraul Res 53(2):253–263CrossRef Herrero A, Bateman A, Medina V (2015) Water flow and sediment transport in a 90° channel diversion: an experimental study. J Hydraul Res 53(2):253–263CrossRef
Zurück zum Zitat Issakhov A, Zhandaulet Y (2020) Numerical simulation of dam break waves on movable beds for various forms of the obstacle by VOF method. Water Resour Manag 34(8):2269–2289CrossRef Issakhov A, Zhandaulet Y (2020) Numerical simulation of dam break waves on movable beds for various forms of the obstacle by VOF method. Water Resour Manag 34(8):2269–2289CrossRef
Zurück zum Zitat Kalita HM (2020) A numerical model for 1D bed morphology calculations. Water Resour Manag 34(15):4975–4989CrossRef Kalita HM (2020) A numerical model for 1D bed morphology calculations. Water Resour Manag 34(15):4975–4989CrossRef
Zurück zum Zitat Keivan T, Hossien M, Pourya O, Evangelista S (2019) Numerical simulation of sediment transport in a U-shaped channel with lateral intake: Effects of intake position and diversion angle. Int J Mod Phys C 30(09):1–8 Keivan T, Hossien M, Pourya O, Evangelista S (2019) Numerical simulation of sediment transport in a U-shaped channel with lateral intake: Effects of intake position and diversion angle. Int J Mod Phys C 30(09):1–8
Zurück zum Zitat Kitsikoudis V, Spiliotis M, Hrissanthou V (2016) Fuzzy regression analysis for sediment incipient motion under turbulent flow conditions. Environ Process 3(3):663–679CrossRef Kitsikoudis V, Spiliotis M, Hrissanthou V (2016) Fuzzy regression analysis for sediment incipient motion under turbulent flow conditions. Environ Process 3(3):663–679CrossRef
Zurück zum Zitat Mahgoub S (2013) Enhancing sediment distribution at the vicinity of power plant intakes using double rows of vanes and groins (Case study: New tebbin power plant). Alex Eng J 52(4):769–778CrossRef Mahgoub S (2013) Enhancing sediment distribution at the vicinity of power plant intakes using double rows of vanes and groins (Case study: New tebbin power plant). Alex Eng J 52(4):769–778CrossRef
Zurück zum Zitat Momplot A, Lipeme Kouyi G, Mignot E, Rivière N, Bertrand-Krajewski J (2017) Typology of the flow structures in dividing open channel flows. J Hydraul Res 55(1):63–71CrossRef Momplot A, Lipeme Kouyi G, Mignot E, Rivière N, Bertrand-Krajewski J (2017) Typology of the flow structures in dividing open channel flows. J Hydraul Res 55(1):63–71CrossRef
Zurück zum Zitat Montaseri H, Asiaei H, Baghlani A, Omidvar P (2019) Numerical study of flow pattern around lateral intake in a curved channel. Int J Mod Phys C 30(11):1950083CrossRef Montaseri H, Asiaei H, Baghlani A, Omidvar P (2019) Numerical study of flow pattern around lateral intake in a curved channel. Int J Mod Phys C 30(11):1950083CrossRef
Zurück zum Zitat Moradinejad A, Haghabi AH, Saneie M, Yonesi H (2017) Investigating the effect of skimming wall on controlling the sediment entrance at lateral intakes. Water Sci Technol Water Supply 17(4):1121–1132CrossRef Moradinejad A, Haghabi AH, Saneie M, Yonesi H (2017) Investigating the effect of skimming wall on controlling the sediment entrance at lateral intakes. Water Sci Technol Water Supply 17(4):1121–1132CrossRef
Zurück zum Zitat Navas-Montilla A, Martínez-Aranda S, Lozano A, García-Palacín I, García-Navarro P (2021) 2D experiments and numerical simulation of the oscillatory shallow flow in an open channel lateral cavity. Adv Water Resour 148:103836 Navas-Montilla A, Martínez-Aranda S, Lozano A, García-Palacín I, García-Navarro P (2021) 2D experiments and numerical simulation of the oscillatory shallow flow in an open channel lateral cavity. Adv Water Resour 148:103836
Zurück zum Zitat Neary VS, Sotiropoulos F, Odgaard AJ (1999) Three-dimensional numerical model of lateral-intake inflows. J Hydraul Eng 125(2):126–140CrossRef Neary VS, Sotiropoulos F, Odgaard AJ (1999) Three-dimensional numerical model of lateral-intake inflows. J Hydraul Eng 125(2):126–140CrossRef
Zurück zum Zitat Ouro P, Juez C, Franca M (2020) Drivers for mass and momentum exchange between the main channel and river bank lateral cavities. Adv Water Resour 137:103511 Ouro P, Juez C, Franca M (2020) Drivers for mass and momentum exchange between the main channel and river bank lateral cavities. Adv Water Resour 137:103511
Zurück zum Zitat Rahmani Firozjaei M, Behnamtalab E, Salehi Neyshabouri SAA (2020) Numerical simulation of the lateral pipe intake: flow and sediment field. Water Environ J 34(2):291–304CrossRef Rahmani Firozjaei M, Behnamtalab E, Salehi Neyshabouri SAA (2020) Numerical simulation of the lateral pipe intake: flow and sediment field. Water Environ J 34(2):291–304CrossRef
Zurück zum Zitat Rahmani Firozjaei M, Rahmani Firozjaei M, Salehi Neyshabouri SAA, Salehi Neyshabouri SAA, Amini Sola S, Amini Sola S, Mohajeri SH, Mohajeri SH (2019) Numerical simulation on the performance improvement of a lateral intake using submerged vanes. Iran J Sci Technol Trans Civil Eng 43(2):167–177CrossRef Rahmani Firozjaei M, Rahmani Firozjaei M, Salehi Neyshabouri SAA, Salehi Neyshabouri SAA, Amini Sola S, Amini Sola S, Mohajeri SH, Mohajeri SH (2019) Numerical simulation on the performance improvement of a lateral intake using submerged vanes. Iran J Sci Technol Trans Civil Eng 43(2):167–177CrossRef
Zurück zum Zitat Roushangar K, Majedi Asl M, Shahnazi S (2021) Hydraulic performance of PK weirs based on experimental study and kernel-based modeling. Water Resour Manag 35(11):3571–3592CrossRef Roushangar K, Majedi Asl M, Shahnazi S (2021) Hydraulic performance of PK weirs based on experimental study and kernel-based modeling. Water Resour Manag 35(11):3571–3592CrossRef
Zurück zum Zitat Serajian MT, Kamanbedast AA, Masjedi A, Heidarnejad M, Hasonizadeh H (2020) Laboratory evaluation of the combined effect of convergence and submerged vanes on lateral Intakes’ sediment input at 90° river bends. Ain Shams Eng J 11(1):245–252CrossRef Serajian MT, Kamanbedast AA, Masjedi A, Heidarnejad M, Hasonizadeh H (2020) Laboratory evaluation of the combined effect of convergence and submerged vanes on lateral Intakes’ sediment input at 90° river bends. Ain Shams Eng J 11(1):245–252CrossRef
Zurück zum Zitat Shynybayeva A, Rojas-Solórzano LR (2020) Eulerian-Eulerian modeling of multiphase flow in horizontal annuli: Current limitations and challenges. Processes 8(11):1426CrossRef Shynybayeva A, Rojas-Solórzano LR (2020) Eulerian-Eulerian modeling of multiphase flow in horizontal annuli: Current limitations and challenges. Processes 8(11):1426CrossRef
Zurück zum Zitat Tayfur G (2021) Empirical, numerical, and soft modelling approaches for non-cohesive sediment transport. EnvironProcess 8(1):37–58CrossRef Tayfur G (2021) Empirical, numerical, and soft modelling approaches for non-cohesive sediment transport. EnvironProcess 8(1):37–58CrossRef
Zurück zum Zitat Yilmaz L (2008) Experimental study of sediment transport in meandering channels. Water Resour Manag 22(2):259–275CrossRef Yilmaz L (2008) Experimental study of sediment transport in meandering channels. Water Resour Manag 22(2):259–275CrossRef
Zurück zum Zitat Zhang H (2012) A unified formula for incipient velocity of sediment. J Hydraul Eng 43(12):1387–1396 Zhang H (2012) A unified formula for incipient velocity of sediment. J Hydraul Eng 43(12):1387–1396
Zurück zum Zitat Zhao W, Zhang J, Yu X, Zhou D, Calamak M (2020) Multiobjective optimization of a tubular pump to improve the applicable operating head and hydraulic performance. Proc Inst Mech Eng C J Mech Eng Sci 235(9):1555–1566CrossRef Zhao W, Zhang J, Yu X, Zhou D, Calamak M (2020) Multiobjective optimization of a tubular pump to improve the applicable operating head and hydraulic performance. Proc Inst Mech Eng C J Mech Eng Sci 235(9):1555–1566CrossRef
Metadaten
Titel
Effects of Diversion Wall on the Hydrodynamics and Withdrawal Sediment of A Lateral Intake
verfasst von
Wenlong Zhao
Jian Zhang
Wei He
Lin shi
Xuyun Chen
Publikationsdatum
24.01.2022
Verlag
Springer Netherlands
Erschienen in
Water Resources Management / Ausgabe 3/2022
Print ISSN: 0920-4741
Elektronische ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-022-03073-9

Weitere Artikel der Ausgabe 3/2022

Water Resources Management 3/2022 Zur Ausgabe